
Verso le nuove frontier delle 
tecnologie dell’informazione: 

lo scenario delle telecomunicazioni
Prof. Marco Giordani (marco.giordani@unipd.it)

L’ORDINE INCONTRA I GIOVANI: Aperitivo Ingegneristico
20 giugno 2025 // Mestre (VE) 



Mi presento…

• Marco Giordani (marco.giordani@unipd.it)
• Professore Associato @ DEI UNIPD.
• L. Triennale in Ingegneria dell’Informazione.
• L. Magistrale in Ingegneria delle Telecomunicazioni.
• Dottorato in Ingegneria delle Telecomunicazioni 
• Reti wireless di nuova generazione (5G/6G).

Copyright © Prof. Marco Giordani. All rights reserved.
Marco Giordani (marco.giordani@unipd.it)

2

mailto:marco.giordani@unipd.it


UNIPD

Copyright © Prof. Marco Giordani. All rights reserved.
Marco Giordani (marco.giordani@unipd.it)

3

• 32 Dipartimenti
• 70’000+ studenti
• 2700+ docenti
• 2700+ PTA

Università degli Studi di Padova



DEI

Copyright © Prof. Marco Giordani. All rights reserved.
Marco Giordani (marco.giordani@unipd.it)

4

Dip. di Ingegneria dell’Informazione

Studenti
triennali

Docenti e 
Ricercatori

3000+130+

160+

Dottorandi Budget di ricerca

30+M€



Cosa sono le telecomunicazioni?
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Cosa sono (DAVVERO) le telecomunicazioni?

Why your mobile-generation children
have a totally different sign for phone: 

https://www.dailymail.co.uk/femail/article
-8503415/Dad-shows-new-hand-gesture-

kids-use-theyre-phone.html
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Cosa sono (DAVVERO) le telecomunicazioni?

2024
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2025

https://abcnews.go.com/International/leo-xiv-conclave-numbers-
number-cardinals-length-voting/story?id=121606316



L’evoluzione delle telecomunicazioni
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6G

2025-2030

Verso un mondo digitale UNIVERSALMENTE connesso
Massive broadband 
Internet of Things

Internet of 
Applications



L’evoluzione delle telecomunicazioni
Di cosa parleremo stasera?

Comunicazione

Realtà aumentata/virtuale

Industria 4.0

Smart Cities

E-Health

“Metaverso”Guida autonoma

Comunicazioni satellitari
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Internet nel mondo
% of families 

connected

100 Mbit/s 1 Gbit/s
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Internet (“Da noi”)
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Pubblica sicurezza
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Inizio del conflitto Israele-Iran

https://radar.cloudflare.com/traffic/ir?dateRange=7d



Che soluzioni per la connettività?

3%
23%
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LE reti non terrestri
Droni, palloni aerostatici, satelliti…
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M. Giordani and M. Zorzi, "Non-Terrestrial Networks in the 6G Era: Challenges and Opportunities," in IEEE Network, vol. 35, no. 2, pp. 244-251, Mar. 2021.



LE reti non terrestri: Droni
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DRONE (UAV)

“Volare basso”

Elevata flessibilità

Possono essere dispiegati “on demand”

Consumo elevato di potenza

Cono di copertura limitato



LE reti non terrestri: satelliti
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Satellite PROs CONs

GEO 36’000 km di altezza
Raggio di copertura ENORME

Ritardo di propagazione

Saturazione della capacità di cella

MEO/LEO 300÷15’000 km di altezza
Raggio di copertura GRANDE

Non stazionario
(deve operare in costellazioni)
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Starlink vs. iris2

25

Starlink IRIS2

Sistema privato Sistema UE (pubblica sicurezza)

LEO (550 km) LEO (2’000 km)  + MEO (10’000 km)

In servizio (40€/mese) In servizio dal 2035

~7000 satelliti (~42’000 in previsione) 290 satelliti (in previsione)

2.6 miliardi di USD 10 miliardi di Euro

Copertura globale Copertura mirata per regioni strategiche UE
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Tipi di scenari: TRASPARENTE
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Tipi di scenari: Rigenerativo
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SATcom: alcuni risultati

• GEO, in alcuni casi, è meglio di LEO (in simulazione…)
• Usare frequenze maggiori (Ka) è più conveniente…

28
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TABLE II: Simulation parameters. We consider four representative 3GPP NTN calibration scenarios (SC1, SC4, SC6, SC9) as described
in [3, Table 6.1.1.1-9] to consider different satellite and frequency configurations. Calibration results in terms of DL FSPL and SNR have
been already validated with those obtained from the ns3-NTN module in [11].

Parameter
LEO-600, S band

3GPP SC9
LEO-600, Ka band

3GPP SC6
GEO, S band

3GPP SC4
GEO, Ka band

3GPP SC1
Satellite UE Satellite UE Satellite UE Satellite UE

Carrier frequency 2 GHz 20 GHz 2 GHz 20 GHz

Bandwidth 30 MHz 400 MHz 30 MHz 400 MHz

DL FSPL 159.1 dB 179.1 dB 190.6 dB 210.6 dB

DL SNR 6.6 dB 8.5 dB 0 dB 11.6 dB

Altitude 600 km N/A 600 km N/A 35786 km N/A 35786 km N/A

EIRP 34 dBW/MHz 23 dBm 16 dBW/MHz 33 dBm 59 dBW/MHz 23 dBm 40 dBW/MHz 33 dBm

Antenna diameter 2 m N/A 0.5 m 0.6 m 22 m N/A 5 m 0.6 m

Antenna gain 30 dBi 0 dBi 38.5 dBi 39.7 dBi 51 dBi 0 dBi 58.5 dBi 39.7 dBi

Noise figure - 7 dB - 1.2 dB - 7 dB - 1.2 dB

Ka band (LEO) Ka band (GEO) S band (LEO) S band (GEO)
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Fig. 2: End-to-end throughput, PDR, and latency at the application layer vs. the source rate R. We focus on a regenerative payload architecture,
and consider a LEO satellite at h = 600 km vs. a GEO satellite at h = 35786 km, at both S and Ka bands.

• Support for robust notification/alert (e.g., emergency mes-
sages or system broadcasts) services over satellite links.

III. END-TO-END EVALUATION OF NTN SCENARIOS

In this section we numerically evaluate the numerical per-
formance of a satellite network based on 3GPP NTN speci-
fications. In Sec. III-A we describe our simulation platform.
Then, in Sec. III-B, results are given as a function of different
orbit and frequency band configurations.

A. Simulation Platform
The simulated scenario consists of a terrestrial UE wire-

lessly connected to a satellite at altitude h that provides
gNB functionalities and connects the UE with a remote host.
Therefore, we consider a regenerative payload architecture,
as described in Sec. II-A and promoted in 3GPP Rel. 19.
Specifically, we evaluate the end-to-the throughput, PDR and
latency at the application layer, considering a LEO satellite
at h = 600 km and a GEO satellite at h = 35786 km, at
both S and Ka bands, for a total of four representative 3GPP
NTN calibration scenarios. This study focuses exclusively on
downlink (DL) traffic. The remote host generates packets at

constant source rate R, with User Datagram Protocol (UDP)
as the transport protocol. We consider a “Rural” scenario in
LOS condition, and the elevation angle is fixed to 90°. The
simulation parameters are reported in Table II.

Simulations are based on ns-3, one of the most accurate
tools for end-to-end network simulations. Specifically, we
use the ns3-NTN module [11], an open-source extension of
ns-3, developed to model full-stack satellite communication
according to the 3GPP 5G NTN Rel. 17 specifications and
beyond. The module implements several key features: (i) the
3GPP NTN channel model based on [8], thereby including the
effects of path loss, atmospheric absorption, scintillation, and
fading at different frequencies (in the S, L, and Ka bands);
(ii) antenna models based on [3], including circular aperture,
VSAT, and UPA antennas; (iii) an NTN-specific Geocentric
Cartesian (ECEF) coordinate system; (iv) accurate modeling
of the propagation delay, and a corresponding Timing Advance
(TA) mechanism to compensate for this delay during schedul-
ing; and (v) tailored adjustments to protocol timers (especially
for HARQ and Radio Resource Control (RRC)) to account for
the long propagation delay in satellite networks.

Grazie a: Mattia Figaro, Francesco Rossato, Alessandro Traspadini, Michele Zorzi
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SATcom : alcuni risultati (VERI)

• RTT: rete terrestre migliore per distanze brevi, ma 
Starlink è competitiva (o migliore) su lunghe distanze.
• Starlink competitivo con rete 5G per applicazioni real-

time, soprattutto in aree remote.

29

3.3 Ping

Figure 3.3 presents the average RTT measured in both terrestrial and non-terrestrial networks,
categorized by destination and weather conditions. The bars indicates the mean RTT, while the
vertical lines indicate the variance (i.e. µ± �).
It is evident that the terrestrial network achieves significantly lower RTTs for close destinations
compared to the non-terrestrial network. However, for far destinations, the non-terrestrial network
performs comparably or even better than the terrestrial network. This outcome is expected, as for
close destinations, the non-terrestrial network is disadvantaged by the initial satellite link (extended
bent-pipe approach, see later in subsection 3.4), whereas for far destinations, leveraging satellite
connectivity becomes beneficial. It’s important to notice that the variance in RTT for the non-
terrestrial network is higher than that of the terrestrial network, regardless of destination.
Interestingly, the RTT values in the non-terrestrial network appear to be independent of weather
conditions.

Figure 3.3: Ping average RTT by Weather and Destination

3.4 Traceroute

To better understand the routing decision of Starlink, a traceroute study has been done.
With the launch of Starlink v1.5 in mid-2022, Laser Inter-Satellite Links (LISL) were introduced
to enhance the routing of packets. The LISL enables extended bent-pipe communication, meaning
that instead of a packet being sent directly from the satellite to a PoP (Point of Presence) within its
range, it can now be routed to a further PoP, if the internal routing algorithms of Starlink determine
it to be optimal. With LISL the packet paths can have the following structure: from the Starlink
dish to the satellite, inter-satellite communications, Starlink PoP, and then the terrestrial network.

Table 1 show the occurrences of the first reached visible hop, i.e. a Starlink PoP, with respect
to the destination reached (traceroute cannot give any information about the LISL). It is evident
that the preferred PoP is the one located in Los Angeles. This could be due to the internal Starlink
routing algorithm determining that the LA PoP is the most optimal—perhaps it has the highest
capacity, or other closer PoPs are congested. Alternatively, it could be an internal policy of Starlink
that designates the LA PoP as the preferred one. However, the author considers it unlikely that the
LA PoP was consistently the best choice of the routing algorithm throughout the entire duration of
the experiment.
Table 2 show the second hop encoutered in the paths of the non-terrestrial network. Notice how the
packets tend to leave the PoP in Los Angeles, and are bounced back to Europe, especially to London
and Frankfurt (where there happens to be other Starlink PoPs). This trend is followed also on the
3rd hop, where all the packets leave Los Angeles.

4

A Multifaceted Look at Starlink Performance WWW ’24, May 13–17, 2024, Singapore, Singapore
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Figure 9: Distribution of median (a) download and (b) upload
goodput over Starlink from selected cities globally.
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Figure 10: Uplink Zoom tra�c over a terrestrial (left) and
Starlink (right). Vertical lines show 15 s recon�gurations.
achieve ⇡ 50–100 Mbps download and ⇡ 4–12 Mbps upload rates
at the 75th percentile. We also do not �nd any correlation between
baseline latencies (see Figure 6) and upload/download goodput,
evident from the contrasting cases of Dublin and Manila. However,
we observe an inverse correlation between loss rates and good-
puts; increasing from 4–8% at the 75th-percentile (see Figure 22 in
Appendix C). Seattle, notable for its latency performance, records
average goodputs. Considering high measurement density from
this region, the trend might be due to Starlink’s internal throttling
or load-balancing to prevent congestion [68]. We also �nd that
over the past 17 months, Starlink goodputs have stabilized rather
than increased, with almost all geographical regions demonstrating
similar performance (shown in Figure 21 in Appendix C).

Takeaway #1 — Starlink exhibits competitive performance to ter-
restrial ISPs on a global scale, especially in regions with dense GS
and PoP deployment. However, noticeable degradation is observ-
able in regions with limited ground infrastructure. Our results
further con�rm that Starlink is a�ected by bu�erbloat. Starlink
appears to be optimizing for consistent global performance, albeit
with a slight reduction in goodput.

5 REAL-TIME APPLICATION PERFORMANCE
While the global Starlink performance in §4 is promising for sup-
porting web-based applications, it does not accurately capture the
potential impact of minute network changes caused by routing,
satellite switches, bu�erbloating, etc., on application performance.
Real-time web applications are known to be sensitive to such �uc-
tuations [7, 17, 40]. In this section, we examine the performance of
Zoom and Amazon Luna cloud gaming over Starlink (see §3.2 for
measurements details). This allows us to assess the suitability of the
LEO network to meet the requirements of the majority of real-time
Internet-based applications, as both applications impose a strict
latency control loop. Cloud gaming necessitates high downlink
bandwidth, while Zoom utilizes uplink and downlink capacity.
Zoom Video Conferencing. Figure 10 shows samples from Zoom
calls conducted over a high-speed terrestrial network and over Star-
link. The total uplink throughput over Starlink is slightly higher,

Terrestrial Cellular Starlink

Idle RTT (ms) 9 46 40
Throughput (Mbps) 1000 150 220

Frames-per-second 59±1.51 59±1.68 59±1.63
Bitrate (Mbps) 23.08±0.38 22.82±4.24 22.81±2.16
Time at 1080p (%) 100 94.11 99.45
Freezes (ms/min) 0±0 0±220.34 0±119.74
Inter-frame (ms) 17±3.65 18±11.1 16±6.76

Game delay (ms) 133.53±19.79 165.82±23.55 167.13±23.12
RTT (ms) 11±13.41 39±17.06 50±16.28
Jitter bu�er (ms) 15±3.27 12±1.33 15±3.35

Table 1: Luna gaming results over 150 mins playtime. Values
denote median±SD and the worst performer is highlighted.
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Figure 11: Cloud gaming over 5G (left) and Starlink (right).
Vertical dashed lines show Starlink recon�guration intervals.

which we trace to FEC (Forward Error Correction) packets that are
frequently sent in addition to raw video data (on average 146±99 Kbps
vs. 2±2 Kbps over terrestrial). The frame rate, inferred from the
packets received by the Zoom peer, does not meaningfully di�er
between the two networks (⇡ 27 FPS). Note that, since Zoom does
not saturate the available uplink and downlink capacity, it should
not be impacted by bu�erbloating. Yet, we observe a slightly higher
loss rate over LEO, which the application combats by proactively
utilizing FEC. The uplink one-way delay (OWD) over Starlink is
higher and more variable compared to the terrestrial connection
(on average 52±14 ms vs. 27±7 ms). All observations also apply to
the downlink except that Starlink’s downlink latency (35±11 ms) is
similar to the terrestrial connection (32±7 ms). Our analysis broadly
agrees with [79] but our packet-level insight reveals bitrate �uctua-
tions partly caused by FEC. Further, our Starlink connection was
more reliable and we did not experience second-long outages.

Interestingly, we observe that the Starlink OWD often notice-
ably shifts at interval points that occur at 15 s increments. Further
investigation reveals the cause to be the Starlink recon�guration
interval, which, as reported in FCC �lings [72], is the time-step at
which the satellite paths are reallocated to the users. Other recent
work also reports periodic link degradations at 15 s boundaries in
their experiments, with RTT spikes and packet losses of several or-
ders [25, 52, 74]. We explore the impact of recon�guration intervals
and other Starlink-internal actions on network performance in §6.

Amazon Luna Cloud Gaming. Table 1 shows 150 minutes of
cloud gaming performance over terrestrial, 5G cellular, and Starlink
networks. Overall, all networks realized close to 60 FPS playback
rate at consistently high bitrate (⇡ 20Mbps). Starlink lies in between
the better-performing terrestrial and cellular in terms of bitrate

2727

Grazie a: Bartolomeo Morellato

Mohan, Nitinder, et al. "A multifaceted look at starlink
performance." Proceedings of the ACM Web Conference 2024.

Rete 5G terrestre Rete Starlink
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5 livelli di automazione
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No, la guida autonoma non è così semplice…
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credits: youtube.com | @tesla
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Quanto costa trasmettere?

• Velocità media upload 4G LTE: ~10 Mbps.
• Velocità media upload 5G: ~20 Mbps.

38
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TABLE VI: (Measured) encoding/decoding/inference time, and (simulated) source rate and throughput for different HSC compression configurations.

Parameter D0/S0 D0/S1 D0/S2 D11/S0 D14/S0 D14/S1 D14/S2

Avg. size [MB] 3.204 1.511 0.235 0.071 0.202 0.100 0.016
Encoding time [ms] 0 0 0 23.3 28.2 12.97 1.95
Decoding time [ms] 0 0 0 10.48 13.57 5.81 0.72
RangeNet++ inference time [ms] 0 56 56 0 0 56 56

Source rate [Mbps] 256.3 120.9 18.8 5.7 16.2 8 1.3
Throughput (d < 50 m) [Mbps] 259.4 124.3 20.2 5.6 17.3 8.6 1.4
Throughput (d > 50 m) [Mbps] 151 72.2 11.3 2.9 10 5 0.7
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Fig. 6: Mean throughput and confidence intervals (shaded areas) vs. d, and for different HSC compression configurations. Solid (dashed) lines are relative to
the use of real data from SemanticKITTI (statistical traffic models).
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Fig. 7: Mean latency and confidence intervals (shaded areas) vs. d, and for
different HSC compression configurations. Solid (dashed) lines are relative to
the use of real data from SemanticKITTI (statistical traffic models).

high (around 50 dB), as the channel is mainly in Line of Sight
(LoS) conditions. As the vehicle moves away from the gNB, the
LoS probability (green line) decreases according to the model
in [62], and the SINR drops down to �12 dB at 300 m. This
translates into a slow degradation of the theoretical capacity of
the channel that, considering the average (25% quantile) SINR,
varies between 3.14 (3) Gbps, 2.75 (1.63) Gbps, and 16.42
(1.8) Mbps at 15, 45, and 300 m, respectively. These results
are also confirmed by the Packet Receipt Rate (PRR) reported
in Table V, which decreases as d increases. For d < 45 m, all
the packets are successfully delivered; however, as d > 45 m,
the packet loss increases due to the worse channel conditions.

2) Throughput and latency: Table VI reports the average
source rate of the application, calculated by multiplying the

average data size by the rate of the LiDAR (10 Hz).4 The
results indicate that existing V2X technologies cannot support
the source rate of raw data (256.3 Mbps for D0/S0) or when
conservative compression is applied (e.g., 120.9 Mbps for
D0/S1). For comparison, the peak nominal throughput of the
IEEE 802.1p protocol is only 27 Mbps [63], which motivates
the need for compression and/or more advanced V2X solutions
like NR V2X operating at mmWaves [9].

In Figs. 6 and 7 we plot the E2E throughput and latency,
respectively, vs. d. The dashed lines are for the results
obtained using real data from SemanticKITTI, while solid
lines correspond to using statistical traffic models. We clearly
see that there is an almost perfect overlap between the two sets
of curves for all HSC compression configurations and values
of d. We conclude that replacing real data with statistical traffic
models has a negligible impact on the network. Interestingly,
this is true also for model D0/S0, that did not pass the KS
test in Sec. IV-B; although this model is not formally accurate
to characterize the size of LiDAR data, it remains sufficiently
precise in terms of network metrics.

Moreover, we see that the throughput (latency) decreases
(increases) as d increases, which is due to the lower SINR
at long distance. From Fig. 7, we see that the latency is
always below the application requirement for autonomous
driving (set to 100 ms based on 3GPP specifications [21])
for all compression configurations except D0/S1 and when
d > 100 m. This may seem counterintuitive, considering that

4Note that, unlike the throughput, the source rate does not include the
headers nor the communication overhead introduced by the protocol stack.
This explains why the throughput can be slightly larger than the source rate
in some cases (e.g., D0/S2, D14/S0�2).
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Quanto costa COMPRIMERE?

• Compressione è causa di data processing.
• L’impatto della compressione non è trascurabile.
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Figure 3: PSNR for different 2D vs. 3D compression methods. “Image”
compression is obtained by averaging PNG and J-LS compression.

Cartesian files encode three geometric coordinates as a tri-
channel image, thus using about 1/3 more BPPs than in the
spherical methods. We also tried to convert the point cloud into
spherical coordinates using the radius only, thus representing
the LiDAR’s input as a single-channel image. While this
approach permits to reduce the BPPs by 2/3 compared to
Cartesian files, the final compression rate was unsatisfactory.

Third, Fig. 2 illustrates that video-based methods like LZW
can compress efficiently by taking advantage of the temporal
correlation between neighboring frames in the 2D point cloud
representation, for example tracking the movement of cars:
compared to PNG, LZW achieves a +11% improvement, just
8% less than G-PCC.

Compression accuracy. Compression accuracy is measured
in terms of PSNR, as depicted in Fig. 3 (where the “Image”
bars are obtained by averaging PNG and J-LS schemes, that
gave similar results). It appears clear that Octree with HIGH
profile exhibits the best performance (+14% against PNG,
however in the face of a significant degradation in terms of
compression rate), even though both LOW and MEDIUM
profiles underperform image-based methods (�17%). In any
case, the PSNR is guaranteed to be above 100 dB, thereby
resulting in basically lossless compression; this ensures that
the reconstructed point cloud after decompression can be con-
sidered the same as the original dataset. Notably, for image-
based methods, both Cartesian and spherical representations
give similar PSNR performance.

On the other hand, Fig. 3 shows that video-based compres-
sion, despite the high compression rate, suffers from very bad
accuracy compared to both image- (up to �55%) and Octre-
based (up to �60%) schemes. In fact, while static images are
encoded with 16 bits, video frames are designed to operated
with 8 bits, as illustrated in Sec. III-C. Even though updates
to both LZW and MJ2 standards have been made to increase
the bit-depth, commercially available implementations are still
limited to 8 (or sometimes 12) bits per sample, which make
the compression lossy.

Similarly, G-PCC exhibits a low PSNR, thus revealing the
accuracy cost (up to 74 dB vs. Octree and 60 dB vs. 2D
solutions) required to achieve its outstanding compression rate.
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Figure 4: Compression (above) and decompression (below) times for different
2D vs. 3D compression methods.

(De)compression time. Timely compression and decom-
pression is of utmost importance for communication systems
to ensure that sensor data is broadcast in real time. From Fig. 4
(above), we observe that image-based methods achieve up to
10⇥ and 20⇥ faster compression than Octree and G-PCC.
In particular, PNG works slightly better than J-LS, achieving
an improvement of 20%. In both cases, the compression time
grows linearly with the number of points in the point cloud, as
expected. On average, Octree and G-PCC can compress around
670k and 440k point/s respectively, against the 5.5M points/s
for PNG. In comparison, the HDL-32 sensor captures 695k
points/s, thereby making image-based compressors the only
methods capable of processing the data at the frame rate of the
LiDAR, thus achieving real-time performance. Interestingly,
video-based strategies (LZW and MJ2) are significantly slower
than their competitors, which make them undesirable for
most applications.

In terms of decompression, Fig. 4 (below) illustrates that
image-based methods are still faster than the 3D ones. Notably,
decompression takes less time than compression, a critical fea-
ture for autonomous driving since decompression is generally
executed on-board of cars [9].

Compression guidelines for data broadcasting. To sum-
marize our conclusions, Fig. 5 compares the compression
performance of the investigated algorithms in terms of PNSR
(to quantify the accuracy of the reconstructed point cloud) and
BPP (to quantify the size of the compressed point cloud). As
anticipated, image-based methods, in particular PNG, achieve
the best trade-off. On one side, Octree-based solutions at
HIGH profile could guarantee up to +14% better PSNR, while
requiring in turn 3⇥ more BPPs for compression, making this
solution ineffective for efficient data broadcasting. A LOW
profile would exhibit worse PSNR and BPP performance, and
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Figure 3: PSNR for different 2D vs. 3D compression methods. “Image”
compression is obtained by averaging PNG and J-LS compression.

Cartesian files encode three geometric coordinates as a tri-
channel image, thus using about 1/3 more BPPs than in the
spherical methods. We also tried to convert the point cloud into
spherical coordinates using the radius only, thus representing
the LiDAR’s input as a single-channel image. While this
approach permits to reduce the BPPs by 2/3 compared to
Cartesian files, the final compression rate was unsatisfactory.

Third, Fig. 2 illustrates that video-based methods like LZW
can compress efficiently by taking advantage of the temporal
correlation between neighboring frames in the 2D point cloud
representation, for example tracking the movement of cars:
compared to PNG, LZW achieves a +11% improvement, just
8% less than G-PCC.

Compression accuracy. Compression accuracy is measured
in terms of PSNR, as depicted in Fig. 3 (where the “Image”
bars are obtained by averaging PNG and J-LS schemes, that
gave similar results). It appears clear that Octree with HIGH
profile exhibits the best performance (+14% against PNG,
however in the face of a significant degradation in terms of
compression rate), even though both LOW and MEDIUM
profiles underperform image-based methods (�17%). In any
case, the PSNR is guaranteed to be above 100 dB, thereby
resulting in basically lossless compression; this ensures that
the reconstructed point cloud after decompression can be con-
sidered the same as the original dataset. Notably, for image-
based methods, both Cartesian and spherical representations
give similar PSNR performance.

On the other hand, Fig. 3 shows that video-based compres-
sion, despite the high compression rate, suffers from very bad
accuracy compared to both image- (up to �55%) and Octre-
based (up to �60%) schemes. In fact, while static images are
encoded with 16 bits, video frames are designed to operated
with 8 bits, as illustrated in Sec. III-C. Even though updates
to both LZW and MJ2 standards have been made to increase
the bit-depth, commercially available implementations are still
limited to 8 (or sometimes 12) bits per sample, which make
the compression lossy.

Similarly, G-PCC exhibits a low PSNR, thus revealing the
accuracy cost (up to 74 dB vs. Octree and 60 dB vs. 2D
solutions) required to achieve its outstanding compression rate.
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Figure 4: Compression (above) and decompression (below) times for different
2D vs. 3D compression methods.

(De)compression time. Timely compression and decom-
pression is of utmost importance for communication systems
to ensure that sensor data is broadcast in real time. From Fig. 4
(above), we observe that image-based methods achieve up to
10⇥ and 20⇥ faster compression than Octree and G-PCC.
In particular, PNG works slightly better than J-LS, achieving
an improvement of 20%. In both cases, the compression time
grows linearly with the number of points in the point cloud, as
expected. On average, Octree and G-PCC can compress around
670k and 440k point/s respectively, against the 5.5M points/s
for PNG. In comparison, the HDL-32 sensor captures 695k
points/s, thereby making image-based compressors the only
methods capable of processing the data at the frame rate of the
LiDAR, thus achieving real-time performance. Interestingly,
video-based strategies (LZW and MJ2) are significantly slower
than their competitors, which make them undesirable for
most applications.

In terms of decompression, Fig. 4 (below) illustrates that
image-based methods are still faster than the 3D ones. Notably,
decompression takes less time than compression, a critical fea-
ture for autonomous driving since decompression is generally
executed on-board of cars [9].

Compression guidelines for data broadcasting. To sum-
marize our conclusions, Fig. 5 compares the compression
performance of the investigated algorithms in terms of PNSR
(to quantify the accuracy of the reconstructed point cloud) and
BPP (to quantify the size of the compressed point cloud). As
anticipated, image-based methods, in particular PNG, achieve
the best trade-off. On one side, Octree-based solutions at
HIGH profile could guarantee up to +14% better PSNR, while
requiring in turn 3⇥ more BPPs for compression, making this
solution ineffective for efficient data broadcasting. A LOW
profile would exhibit worse PSNR and BPP performance, and
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Figure 3: PSNR for different 2D vs. 3D compression methods. “Image”
compression is obtained by averaging PNG and J-LS compression.

Cartesian files encode three geometric coordinates as a tri-
channel image, thus using about 1/3 more BPPs than in the
spherical methods. We also tried to convert the point cloud into
spherical coordinates using the radius only, thus representing
the LiDAR’s input as a single-channel image. While this
approach permits to reduce the BPPs by 2/3 compared to
Cartesian files, the final compression rate was unsatisfactory.

Third, Fig. 2 illustrates that video-based methods like LZW
can compress efficiently by taking advantage of the temporal
correlation between neighboring frames in the 2D point cloud
representation, for example tracking the movement of cars:
compared to PNG, LZW achieves a +11% improvement, just
8% less than G-PCC.

Compression accuracy. Compression accuracy is measured
in terms of PSNR, as depicted in Fig. 3 (where the “Image”
bars are obtained by averaging PNG and J-LS schemes, that
gave similar results). It appears clear that Octree with HIGH
profile exhibits the best performance (+14% against PNG,
however in the face of a significant degradation in terms of
compression rate), even though both LOW and MEDIUM
profiles underperform image-based methods (�17%). In any
case, the PSNR is guaranteed to be above 100 dB, thereby
resulting in basically lossless compression; this ensures that
the reconstructed point cloud after decompression can be con-
sidered the same as the original dataset. Notably, for image-
based methods, both Cartesian and spherical representations
give similar PSNR performance.

On the other hand, Fig. 3 shows that video-based compres-
sion, despite the high compression rate, suffers from very bad
accuracy compared to both image- (up to �55%) and Octre-
based (up to �60%) schemes. In fact, while static images are
encoded with 16 bits, video frames are designed to operated
with 8 bits, as illustrated in Sec. III-C. Even though updates
to both LZW and MJ2 standards have been made to increase
the bit-depth, commercially available implementations are still
limited to 8 (or sometimes 12) bits per sample, which make
the compression lossy.

Similarly, G-PCC exhibits a low PSNR, thus revealing the
accuracy cost (up to 74 dB vs. Octree and 60 dB vs. 2D
solutions) required to achieve its outstanding compression rate.
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Figure 4: Compression (above) and decompression (below) times for different
2D vs. 3D compression methods.

(De)compression time. Timely compression and decom-
pression is of utmost importance for communication systems
to ensure that sensor data is broadcast in real time. From Fig. 4
(above), we observe that image-based methods achieve up to
10⇥ and 20⇥ faster compression than Octree and G-PCC.
In particular, PNG works slightly better than J-LS, achieving
an improvement of 20%. In both cases, the compression time
grows linearly with the number of points in the point cloud, as
expected. On average, Octree and G-PCC can compress around
670k and 440k point/s respectively, against the 5.5M points/s
for PNG. In comparison, the HDL-32 sensor captures 695k
points/s, thereby making image-based compressors the only
methods capable of processing the data at the frame rate of the
LiDAR, thus achieving real-time performance. Interestingly,
video-based strategies (LZW and MJ2) are significantly slower
than their competitors, which make them undesirable for
most applications.

In terms of decompression, Fig. 4 (below) illustrates that
image-based methods are still faster than the 3D ones. Notably,
decompression takes less time than compression, a critical fea-
ture for autonomous driving since decompression is generally
executed on-board of cars [9].

Compression guidelines for data broadcasting. To sum-
marize our conclusions, Fig. 5 compares the compression
performance of the investigated algorithms in terms of PNSR
(to quantify the accuracy of the reconstructed point cloud) and
BPP (to quantify the size of the compressed point cloud). As
anticipated, image-based methods, in particular PNG, achieve
the best trade-off. On one side, Octree-based solutions at
HIGH profile could guarantee up to +14% better PSNR, while
requiring in turn 3⇥ more BPPs for compression, making this
solution ineffective for efficient data broadcasting. A LOW
profile would exhibit worse PSNR and BPP performance, and
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Figure 3: PSNR for different 2D vs. 3D compression methods. “Image”
compression is obtained by averaging PNG and J-LS compression.

Cartesian files encode three geometric coordinates as a tri-
channel image, thus using about 1/3 more BPPs than in the
spherical methods. We also tried to convert the point cloud into
spherical coordinates using the radius only, thus representing
the LiDAR’s input as a single-channel image. While this
approach permits to reduce the BPPs by 2/3 compared to
Cartesian files, the final compression rate was unsatisfactory.

Third, Fig. 2 illustrates that video-based methods like LZW
can compress efficiently by taking advantage of the temporal
correlation between neighboring frames in the 2D point cloud
representation, for example tracking the movement of cars:
compared to PNG, LZW achieves a +11% improvement, just
8% less than G-PCC.

Compression accuracy. Compression accuracy is measured
in terms of PSNR, as depicted in Fig. 3 (where the “Image”
bars are obtained by averaging PNG and J-LS schemes, that
gave similar results). It appears clear that Octree with HIGH
profile exhibits the best performance (+14% against PNG,
however in the face of a significant degradation in terms of
compression rate), even though both LOW and MEDIUM
profiles underperform image-based methods (�17%). In any
case, the PSNR is guaranteed to be above 100 dB, thereby
resulting in basically lossless compression; this ensures that
the reconstructed point cloud after decompression can be con-
sidered the same as the original dataset. Notably, for image-
based methods, both Cartesian and spherical representations
give similar PSNR performance.

On the other hand, Fig. 3 shows that video-based compres-
sion, despite the high compression rate, suffers from very bad
accuracy compared to both image- (up to �55%) and Octre-
based (up to �60%) schemes. In fact, while static images are
encoded with 16 bits, video frames are designed to operated
with 8 bits, as illustrated in Sec. III-C. Even though updates
to both LZW and MJ2 standards have been made to increase
the bit-depth, commercially available implementations are still
limited to 8 (or sometimes 12) bits per sample, which make
the compression lossy.

Similarly, G-PCC exhibits a low PSNR, thus revealing the
accuracy cost (up to 74 dB vs. Octree and 60 dB vs. 2D
solutions) required to achieve its outstanding compression rate.
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Figure 4: Compression (above) and decompression (below) times for different
2D vs. 3D compression methods.

(De)compression time. Timely compression and decom-
pression is of utmost importance for communication systems
to ensure that sensor data is broadcast in real time. From Fig. 4
(above), we observe that image-based methods achieve up to
10⇥ and 20⇥ faster compression than Octree and G-PCC.
In particular, PNG works slightly better than J-LS, achieving
an improvement of 20%. In both cases, the compression time
grows linearly with the number of points in the point cloud, as
expected. On average, Octree and G-PCC can compress around
670k and 440k point/s respectively, against the 5.5M points/s
for PNG. In comparison, the HDL-32 sensor captures 695k
points/s, thereby making image-based compressors the only
methods capable of processing the data at the frame rate of the
LiDAR, thus achieving real-time performance. Interestingly,
video-based strategies (LZW and MJ2) are significantly slower
than their competitors, which make them undesirable for
most applications.

In terms of decompression, Fig. 4 (below) illustrates that
image-based methods are still faster than the 3D ones. Notably,
decompression takes less time than compression, a critical fea-
ture for autonomous driving since decompression is generally
executed on-board of cars [9].

Compression guidelines for data broadcasting. To sum-
marize our conclusions, Fig. 5 compares the compression
performance of the investigated algorithms in terms of PNSR
(to quantify the accuracy of the reconstructed point cloud) and
BPP (to quantify the size of the compressed point cloud). As
anticipated, image-based methods, in particular PNG, achieve
the best trade-off. On one side, Octree-based solutions at
HIGH profile could guarantee up to +14% better PSNR, while
requiring in turn 3⇥ more BPPs for compression, making this
solution ineffective for efficient data broadcasting. A LOW
profile would exhibit worse PSNR and BPP performance, and
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lesions. In this task, the CNN achieves 72.1 ±  0.9% (mean ±  s.d.)  overall 
accuracy (the average of individual inference class accuracies) and two 
dermatologists attain 65.56% and 66.0% accuracy on a subset of the 
validation set. Second, we validate the algorithm using a nine-class 
disease partition—the second-level nodes—so that the diseases of 
each class have similar medical treatment plans. The CNN achieves 
55.4 ±  1.7% overall accuracy whereas the same two dermatologists 
attain 53.3% and 55.0% accuracy. A CNN trained on a finer disease 
partition performs better than one trained directly on three or nine 
classes (see Extended Data Table 2), demonstrating the effectiveness 
of our partitioning algorithm. Because images of the validation set are 
labelled by dermatologists, but not necessarily confirmed by biopsy, 
this metric is inconclusive, and instead shows that the CNN is learning 
relevant information.

To conclusively validate the algorithm, we tested, using only 
 biopsy-proven images on medically important use cases, whether 
the algorithm and dermatologists could distinguish malignant versus 
benign lesions of epidermal (keratinocyte carcinoma compared to 
benign seborrheic keratosis) or melanocytic (malignant melanoma 
compared to benign nevus) origin. For melanocytic lesions, we show 

two trials, one using standard images and the other using dermoscopy 
images, which reflect the two steps that a dermatologist might carry out 
to obtain a clinical impression. The same CNN is used for all three tasks. 
Figure 2b shows a few example images, demonstrating the difficulty in 
distinguishing between malignant and benign lesions, which share many 
visual features. Our comparison metrics are sensitivity and specificity:

=sensitivity true positive
positive

=specificity true negative
negative

where ‘true positive’ is the number of correctly predicted malignant 
lesions, ‘positive’ is the number of malignant lesions shown, ‘true neg-
ative’ is the number of correctly predicted benign lesions, and ‘neg-
ative’ is the number of benign lesions shown. When a test set is fed 
through the CNN, it outputs a probability, P, of malignancy, per image.  
We can compute the sensitivity and specificity of these probabilities 

Acral-lentiginous melanoma
Amelanotic melanoma
Lentigo melanoma
…

Blue nevus
Halo nevus
Mongolian spot
…

Training classes (757)Deep convolutional neural network (Inception v3) Inference classes (varies by task) 

92% malignant melanocytic lesion

8% benign melanocytic lesion

Skin lesion image

Convolution
AvgPool
MaxPool
Concat
Dropout
Fully connected
Softmax

Figure 1 | Deep CNN layout. Our classification technique is a  
deep CNN. Data flow is from left to right: an image of a skin lesion  
(for example, melanoma) is sequentially warped into a probability 
distribution over clinical classes of skin disease using Google Inception  
v3 CNN architecture pretrained on the ImageNet dataset (1.28 million 
images over 1,000 generic object classes) and fine-tuned on our own 
dataset of 129,450 skin lesions comprising 2,032 different diseases.  
The 757 training classes are defined using a novel taxonomy of skin disease 
and a partitioning algorithm that maps diseases into training classes 

(for example, acrolentiginous melanoma, amelanotic melanoma, lentigo 
melanoma). Inference classes are more general and are composed of one 
or more training classes (for example, malignant melanocytic lesions—the 
class of melanomas). The probability of an inference class is calculated by 
summing the probabilities of the training classes according to taxonomy 
structure (see Methods). Inception v3 CNN architecture reprinted 
from https://research.googleblog.com/2016/03/train-your-own-image-
classifier-with.html
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Figure 2 | A schematic illustration of the taxonomy and example test 
set images. a, A subset of the top of the tree-structured taxonomy of skin 
disease. The full taxonomy contains 2,032 diseases and is organized based 
on visual and clinical similarity of diseases. Red indicates malignant, 
green indicates benign, and orange indicates conditions that can be either. 
Black indicates melanoma. The first two levels of the taxonomy are used in 
validation. Testing is restricted to the tasks of b. b, Malignant and benign 

example images from two disease classes. These test images highlight the 
difficulty of malignant versus benign discernment for the three medically 
critical classification tasks we consider: epidermal lesions, melanocytic 
lesions and melanocytic lesions visualized with a dermoscope. Example 
images reprinted with permission from the Edinburgh Dermofit Library 
(https://licensing.eri.ed.ac.uk/i/software/dermofit-image-library.html).
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Extended Data Figure 4 | Extension of Figure 3 with a different 
dermatological question. a, Identical plots and results as shown in Fig. 3a, 
except that dermatologists were asked if a lesion appeared to be malignant 
or benign. This is a somewhat unnatural question to ask, in the clinic, the 

only actionable decision is whether or not to biopsy or treat a lesion. The 
blue curves for the CNN are identical to Fig. 3. b, Figure 3b reprinted for 
visual comparison to a.
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lesions. In this task, the CNN achieves 72.1 ±  0.9% (mean ±  s.d.)  overall 
accuracy (the average of individual inference class accuracies) and two 
dermatologists attain 65.56% and 66.0% accuracy on a subset of the 
validation set. Second, we validate the algorithm using a nine-class 
disease partition—the second-level nodes—so that the diseases of 
each class have similar medical treatment plans. The CNN achieves 
55.4 ±  1.7% overall accuracy whereas the same two dermatologists 
attain 53.3% and 55.0% accuracy. A CNN trained on a finer disease 
partition performs better than one trained directly on three or nine 
classes (see Extended Data Table 2), demonstrating the effectiveness 
of our partitioning algorithm. Because images of the validation set are 
labelled by dermatologists, but not necessarily confirmed by biopsy, 
this metric is inconclusive, and instead shows that the CNN is learning 
relevant information.

To conclusively validate the algorithm, we tested, using only 
 biopsy-proven images on medically important use cases, whether 
the algorithm and dermatologists could distinguish malignant versus 
benign lesions of epidermal (keratinocyte carcinoma compared to 
benign seborrheic keratosis) or melanocytic (malignant melanoma 
compared to benign nevus) origin. For melanocytic lesions, we show 

two trials, one using standard images and the other using dermoscopy 
images, which reflect the two steps that a dermatologist might carry out 
to obtain a clinical impression. The same CNN is used for all three tasks. 
Figure 2b shows a few example images, demonstrating the difficulty in 
distinguishing between malignant and benign lesions, which share many 
visual features. Our comparison metrics are sensitivity and specificity:

=sensitivity true positive
positive

=specificity true negative
negative

where ‘true positive’ is the number of correctly predicted malignant 
lesions, ‘positive’ is the number of malignant lesions shown, ‘true neg-
ative’ is the number of correctly predicted benign lesions, and ‘neg-
ative’ is the number of benign lesions shown. When a test set is fed 
through the CNN, it outputs a probability, P, of malignancy, per image.  
We can compute the sensitivity and specificity of these probabilities 
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Figure 1 | Deep CNN layout. Our classification technique is a  
deep CNN. Data flow is from left to right: an image of a skin lesion  
(for example, melanoma) is sequentially warped into a probability 
distribution over clinical classes of skin disease using Google Inception  
v3 CNN architecture pretrained on the ImageNet dataset (1.28 million 
images over 1,000 generic object classes) and fine-tuned on our own 
dataset of 129,450 skin lesions comprising 2,032 different diseases.  
The 757 training classes are defined using a novel taxonomy of skin disease 
and a partitioning algorithm that maps diseases into training classes 

(for example, acrolentiginous melanoma, amelanotic melanoma, lentigo 
melanoma). Inference classes are more general and are composed of one 
or more training classes (for example, malignant melanocytic lesions—the 
class of melanomas). The probability of an inference class is calculated by 
summing the probabilities of the training classes according to taxonomy 
structure (see Methods). Inception v3 CNN architecture reprinted 
from https://research.googleblog.com/2016/03/train-your-own-image-
classifier-with.html
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Figure 2 | A schematic illustration of the taxonomy and example test 
set images. a, A subset of the top of the tree-structured taxonomy of skin 
disease. The full taxonomy contains 2,032 diseases and is organized based 
on visual and clinical similarity of diseases. Red indicates malignant, 
green indicates benign, and orange indicates conditions that can be either. 
Black indicates melanoma. The first two levels of the taxonomy are used in 
validation. Testing is restricted to the tasks of b. b, Malignant and benign 

example images from two disease classes. These test images highlight the 
difficulty of malignant versus benign discernment for the three medically 
critical classification tasks we consider: epidermal lesions, melanocytic 
lesions and melanocytic lesions visualized with a dermoscope. Example 
images reprinted with permission from the Edinburgh Dermofit Library 
(https://licensing.eri.ed.ac.uk/i/software/dermofit-image-library.html).
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Extended Data Figure 4 | Extension of Figure 3 with a different 
dermatological question. a, Identical plots and results as shown in Fig. 3a, 
except that dermatologists were asked if a lesion appeared to be malignant 
or benign. This is a somewhat unnatural question to ask, in the clinic, the 

only actionable decision is whether or not to biopsy or treat a lesion. The 
blue curves for the CNN are identical to Fig. 3. b, Figure 3b reprinted for 
visual comparison to a.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Esteva, Andre, et al. "Dermatologist-level classification of skin cancer with deep neural
networks." nature 542.7639 (2017): 115-118.

Successo 
del 96%

43Copyright © Prof. Marco Giordani. All rights reserved.
Marco Giordani (marco.giordani@unipd.it)

1.28 MILIONI 
DI IMMAGINI







YOLOv8



YOLOv8



Affidabilità
• Detection complessa quanto più “l’oggetto” è piccolo.
• L’impatto della compressione non è trascurabile.
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Fig. 5. Total compression and decompression time vs. the compression
configuration (in terms of compression level c and bits q) for Draco.
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Fig. 6. (De)coding time vs. the compressed file size for Draco.

of q and c. Specifically, this time increases with q. This is due
to the fact that the resulting point cloud is represented with
more bits, which requires more time for both encoding and
decoding. Similarly the (de)compression time also increases
with the compression level c, especially when q is small.
This is because the resulting representation of the point cloud
after compression is more detailed, which requires additional
computational effort to process and encode.

Importantly, the compression time with Draco is generally
orders of magnitude lower than with G-PCC. In the best case,
Draco can compress data in less than 10 ms, against more than
100 ms for G-PCC. Considering that LiDAR sensors generally
capture data at 30 fps, i.e., one perception every around 33 ms,
Draco, unlike G-PCC, is capable of processing data in real-
time, that is within the frame rate of the LiDAR.

Notice that, as q and c increase, the (de)compression time
also increases. Conversely, the size of the compressed point
cloud decreases with c but increases with q. Because of this
antagonistic behavior, there is no explicit correlation between
the (de)compression time and the size of the resulting point
cloud, as illustrated in Fig. 6. Moreover, we can see that the
decompression time is almost constant when the file size is
more than 20KB (it varies from 5.4ms to 6.6ms), while the
compression time does not have a clear trend.
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Fig. 7. AP@0.70 (%) for the car class vs. the compression configuration, for
different codecs and detectors. We use the notation “qxx” to indicate that the
performance of Draco depends only on q.

C. Object Detection

1) Average Precision: We evaluate the performance of the
object detectors described in Sec. III-B, namely PV-RCNN,
PointPillars and SECOND, in terms of the AP for the car
(Fig. 7) and pedestrian (Fig. 8) classes, as these are the
most common classes in the SELMA dataset. The AP is
calculated on the point clouds compressed via G-PCC or
Draco, considering different compression configurations. For
G-PCC, we consider all the four options, i.e., p0, p1, p2, p3.
For Draco, we only evaluate the impact of the number of
quantization bits q 2 {8, 9, 10, 11}, while averaging over all
compression levels c, given the minor impact of c with respect
to q, as discussed in Sec. V-B. We use the notation “qxx” to
indicate that the performance of Draco depends only on q.

In Fig. 7 we plot the AP@0.70 for the car class, thereby
using a threshold of 0.70 for the Intersection over Union
(IoU), meaning that only bounding boxes with an IoU greater
than 0.70 are considered for the AP computation. First, we
observe that the AP increases when a lower compression is
applied, for any detector and codec. This is because a lighter
compression preserves more structural information and details
in the point cloud, so detectors can identify objects in the scene
more accurately. For example, for Draco, AP = 38 using 8xx,
vs. AP ' 85 for 11xx. However, the AP does not increase
indefinitely, and eventually reaches a plateau. At this point,
the error introduced by compression is negligible. This is a
desirable feature for TD applications, as it ensures that the
decompressed point cloud remains virtually identical to the
original data. Next, we note that G-PCC outperforms Draco
in terms of AP (up to two times considering 8xx vs. p0),
while also reducing the compressed file size as illustrated in
Fig. 2. This is because G-PCC uses geometric methods based
on Octrees and voxels to compress data, which preserve the
spatial structure of the point cloud more effectively. Finally, we
observe that PointPillars underperforms compared to all other
competitors, since it collapses 3D point clouds into pseudo-
images using pillars, which loose depth information and dete-
riorate object detection. In contrast, PV-RCNN and SECOND
achieve comparable results overall, though SECOND is more
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Fig. 8. AP@0.50 (%) for the pedestrian class vs. the compression configura-
tion, for different codecs and detectors. We use the notation “qxx” to indicate
that the performance of Draco depends only on q.

effective as compressing more (e.g., p0, p1, 8xx and 9xx), i.e.,
when object detection is more challenging. This can be due to
sparse convolutions in SECOND, which can be effective even
in extreme cases.

In Fig. 8 we plot the AP@0.50 for the pedestrian class. We
set a looser threshold of 0.50 for the IoU, vs. 0.70 for the
car class, as the identification of pedestrians is generally more
challenging than cars. As expected, the AP of the pedestrian
class is lower than for the car class, up to �25% on average.
On one side, pedestrians are smaller and may be represented
by fewer points, so they are more difficult to detect. At the
same time, pedestrians are less common than cars in the
SELMA dataset (class imbalance problem [38]), which further
deteriorates the AP performance. Again, G-PCC outperforms
Draco, especially when more severe compression is applied
to reduce the compressed file size: the AP increases from
3 to 30 using G-PCC (p0) rather than Draco (8xx). Also in
this case, PointPillars has the worst AP performance, but the
gap with PV-RCNN and SECOND is smaller than for the car
class. This is because all detectors face inherent challenges
when processing small and sparse entities like pedestrians,
regardless of the underlying point cloud representation and
detection configuration. Finally, PV-RCNN and SECOND
achieve comparable results in terms of AP.

D. Wireless Network Performance

In this part, we evaluate the impact of compression and
detection on the communication network.

1) (De)compression time: In Fig. 9 we plot the rela-
tionships between the AP@0.70 for the car class, the total
compression and decompression time, and the size of the
compressed point cloud obtained for different compression
configurations. We recall that, as reported in Table I, TD,
specifically information sharing via V2X communication for
“Advanced Driving,” requires that the e2e delay is below 100
ms. In this definition, the time required to compress and
decompress the point cloud is not considered, though it is
critical to assess whether the application can operate in real
time, or at least satisfy the network constraints. We observe
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Fig. 9. Total compression and decompression time vs. AP@0.70 (%) for the
car class and the compressed file size, for different detectors. The dashed red
line corresponds to the TD delay requirement, set to 100 ms based on Table I.
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that the (de)compression time using G-PCC, unlike Draco, is
always above the 100-ms requirement for TD, regardless of
the compression configuration. Interestingly, for Draco, there
exist some configurations for which this time is even less than
10 ms, corresponding to a file size of around 10 KB, and using
PointPillars for detection.

2) Inference time: Besides the time needed for compres-
sion, the TD application is subject to the time required by
the detection algorithm, typically based on a Deep Neural
Network (DNN), to return some results. This is the inference
time, which depends on several factors, including the DNN
input size, the model architecture (depth, width, and number
of parameters), and the type of hardware (CPU, GPU, TPU
accelerator). Inference performance is related to the batch size,
i.e., the number of input samples that the DNN can process
simultaneously. In Fig. 10 we show the inference time with
different codecs and detectors, as a function of the batch size,
normalized by the number of samples in the batch. We can see
that the inference time for PointPillars and SECOND does
not depend on the compression technique. This is because
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The moral machine
https://www.moralmachine.net
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unilateral dichotomization of each of the six attributes, resulting in 
two subpopulations for each, the difference in probability (∆P) has a  
positive value for all considered subpopulations. For example, both 
male and female respondents indicated preference for sparing females, 
but the latter group showed a stronger preference (Extended Data 
Fig. 3). In summary, the individual variations that we observe are  
theoretically important, but not essential information for policymakers.

Cultural clusters
Geolocation allowed us to identify the country of residence of Moral 
Machine respondents, and to seek clusters of countries with homo-
geneous vectors of moral preferences. We selected the 130 countries 
with at least 100 respondents (n range 101–448,125), standardized 
the nine target AMCEs of each country, and conducted a hierarchical 
clustering on these nine scores, using Euclidean distance and Ward’s 
minimum variance method20. This analysis identified three distinct 
‘moral clusters’ of countries. These are shown in Fig. 3a, and are broadly 
consistent with both geographical and cultural proximity according to 
the Inglehart–Welzel Cultural Map 2010–201421.

The first cluster (which we label the Western cluster) contains North 
America as well as many European countries of Protestant, Catholic, 
and Orthodox Christian cultural groups. The internal structure 
within this cluster also exhibits notable face validity, with a sub-cluster  
containing Scandinavian countries, and a sub-cluster containing 
Commonwealth countries.

The second cluster (which we call the Eastern cluster) contains 
many far eastern countries such as Japan and Taiwan that belong to the 
Confucianist cultural group, and Islamic countries such as Indonesia, 
Pakistan and Saudi Arabia.

The third cluster (a broadly Southern cluster) consists of the Latin 
American countries of Central and South America, in addition to some 
countries that are characterized in part by French influence (for example,  
metropolitan France, French overseas territories, and territories 
that were at some point under French leadership). Latin American  
countries are cleanly separated in their own sub-cluster within the 
Southern cluster.

To rule out the potential effect of language, we found that the same 
clusters also emerged when the clustering analysis was restricted to 
participants who relied only on the pictorial representations of the 

dilemmas, without accessing their written descriptions (Extended 
Data Fig. 4).

This clustering pattern (which is fairly robust; Extended Data Fig. 5) 
suggests that geographical and cultural proximity may allow groups 
of territories to converge on shared preferences for machine ethics. 
Between-cluster differences, though, may pose greater problems. As 
shown in Fig. 3b, clusters largely differ in the weight they give to some 
preferences. For example, the preference to spare younger characters 
rather than older characters is much less pronounced for countries 
in the Eastern cluster, and much higher for countries in the Southern 
cluster. The same is true for the preference for sparing higher status 
characters. Similarly, countries in the Southern cluster exhibit a much 
weaker preference for sparing humans over pets, compared to the other 
two clusters. Only the (weak) preference for sparing pedestrians over 
passengers and the (moderate) preference for sparing the lawful over 
the unlawful appear to be shared to the same extent in all clusters.

Finally, we observe some striking peculiarities, such as the strong 
preference for sparing women and the strong preference for sparing 
fit characters in the Southern cluster. All the patterns of similarities 
and differences unveiled in Fig. 3b, though, suggest that manufactur-
ers and policymakers should be, if not responsive, at least cognizant 
of moral preferences in the countries in which they design artificial 
intelligence systems and policies. Whereas the ethical preferences of the 
public should not necessarily be the primary arbiter of ethical policy,  
the people’s willingness to buy autonomous vehicles and tolerate them 
on the roads will depend on the palatability of the ethical rules that 
are adopted.

Country-level predictors
Preferences revealed by the Moral Machine are highly correlated to 
cultural and economic variations between countries. These correlations 
provide support for the external validity of the platform, despite the 
self-selected nature of our sample. Although we do not attempt to pin 
down the ultimate reason or mechanism behind these correlations, we 
document them here as they point to possible deeper explanations of 
the cross-country differences and the clusters identified above.

As an illustration, consider the distance between the United States 
and other countries in terms of the moral preferences extracted from 
the Moral Machine (‘MM distance’). Figure 4c shows a substantial 
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Fig. 2 | Global preferences. a, AMCE for each preference. In each row, ∆P 
is the difference between the probability of sparing characters possessing 
the attribute on the right, and the probability of sparing characters 
possessing the attribute on the left, aggregated over all other attributes. 
For example, for the attribute age, the probability of sparing young 
characters is 0.49 (s.e. = 0.0008) greater than the probability of sparing 
older characters. The 95% confidence intervals of the means are omitted 
owing to their insignificant width, given the sample size (n = 35.2 million). 
For the number of characters (No. characters), effect sizes are shown 

for each number of additional characters (1 to 4; n1 = 1.52 million, 
n2 = 1.52 million, n3 = 1.52 million, n4 = 1.53 million); the effect size for 
two additional characters overlaps with the mean effect of the attribute. AV, 
autonomous vehicle. b, Relative advantage or penalty for each character, 
compared to an adult man or woman. For each character, ∆P is the 
difference the between the probability of sparing this character (when 
presented alone) and the probability of sparing one adult man or woman 
(n = 1 million). For example, the probability of sparing a girl is 0.15 (s.e. 
= 0.003) higher than the probability of sparing an adult man or woman.
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unilateral dichotomization of each of the six attributes, resulting in 
two subpopulations for each, the difference in probability (∆P) has a  
positive value for all considered subpopulations. For example, both 
male and female respondents indicated preference for sparing females, 
but the latter group showed a stronger preference (Extended Data 
Fig. 3). In summary, the individual variations that we observe are  
theoretically important, but not essential information for policymakers.

Cultural clusters
Geolocation allowed us to identify the country of residence of Moral 
Machine respondents, and to seek clusters of countries with homo-
geneous vectors of moral preferences. We selected the 130 countries 
with at least 100 respondents (n range 101–448,125), standardized 
the nine target AMCEs of each country, and conducted a hierarchical 
clustering on these nine scores, using Euclidean distance and Ward’s 
minimum variance method20. This analysis identified three distinct 
‘moral clusters’ of countries. These are shown in Fig. 3a, and are broadly 
consistent with both geographical and cultural proximity according to 
the Inglehart–Welzel Cultural Map 2010–201421.

The first cluster (which we label the Western cluster) contains North 
America as well as many European countries of Protestant, Catholic, 
and Orthodox Christian cultural groups. The internal structure 
within this cluster also exhibits notable face validity, with a sub-cluster  
containing Scandinavian countries, and a sub-cluster containing 
Commonwealth countries.

The second cluster (which we call the Eastern cluster) contains 
many far eastern countries such as Japan and Taiwan that belong to the 
Confucianist cultural group, and Islamic countries such as Indonesia, 
Pakistan and Saudi Arabia.

The third cluster (a broadly Southern cluster) consists of the Latin 
American countries of Central and South America, in addition to some 
countries that are characterized in part by French influence (for example,  
metropolitan France, French overseas territories, and territories 
that were at some point under French leadership). Latin American  
countries are cleanly separated in their own sub-cluster within the 
Southern cluster.

To rule out the potential effect of language, we found that the same 
clusters also emerged when the clustering analysis was restricted to 
participants who relied only on the pictorial representations of the 

dilemmas, without accessing their written descriptions (Extended 
Data Fig. 4).

This clustering pattern (which is fairly robust; Extended Data Fig. 5) 
suggests that geographical and cultural proximity may allow groups 
of territories to converge on shared preferences for machine ethics. 
Between-cluster differences, though, may pose greater problems. As 
shown in Fig. 3b, clusters largely differ in the weight they give to some 
preferences. For example, the preference to spare younger characters 
rather than older characters is much less pronounced for countries 
in the Eastern cluster, and much higher for countries in the Southern 
cluster. The same is true for the preference for sparing higher status 
characters. Similarly, countries in the Southern cluster exhibit a much 
weaker preference for sparing humans over pets, compared to the other 
two clusters. Only the (weak) preference for sparing pedestrians over 
passengers and the (moderate) preference for sparing the lawful over 
the unlawful appear to be shared to the same extent in all clusters.

Finally, we observe some striking peculiarities, such as the strong 
preference for sparing women and the strong preference for sparing 
fit characters in the Southern cluster. All the patterns of similarities 
and differences unveiled in Fig. 3b, though, suggest that manufactur-
ers and policymakers should be, if not responsive, at least cognizant 
of moral preferences in the countries in which they design artificial 
intelligence systems and policies. Whereas the ethical preferences of the 
public should not necessarily be the primary arbiter of ethical policy,  
the people’s willingness to buy autonomous vehicles and tolerate them 
on the roads will depend on the palatability of the ethical rules that 
are adopted.

Country-level predictors
Preferences revealed by the Moral Machine are highly correlated to 
cultural and economic variations between countries. These correlations 
provide support for the external validity of the platform, despite the 
self-selected nature of our sample. Although we do not attempt to pin 
down the ultimate reason or mechanism behind these correlations, we 
document them here as they point to possible deeper explanations of 
the cross-country differences and the clusters identified above.

As an illustration, consider the distance between the United States 
and other countries in terms of the moral preferences extracted from 
the Moral Machine (‘MM distance’). Figure 4c shows a substantial 
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Fig. 2 | Global preferences. a, AMCE for each preference. In each row, ∆P 
is the difference between the probability of sparing characters possessing 
the attribute on the right, and the probability of sparing characters 
possessing the attribute on the left, aggregated over all other attributes. 
For example, for the attribute age, the probability of sparing young 
characters is 0.49 (s.e. = 0.0008) greater than the probability of sparing 
older characters. The 95% confidence intervals of the means are omitted 
owing to their insignificant width, given the sample size (n = 35.2 million). 
For the number of characters (No. characters), effect sizes are shown 

for each number of additional characters (1 to 4; n1 = 1.52 million, 
n2 = 1.52 million, n3 = 1.52 million, n4 = 1.53 million); the effect size for 
two additional characters overlaps with the mean effect of the attribute. AV, 
autonomous vehicle. b, Relative advantage or penalty for each character, 
compared to an adult man or woman. For each character, ∆P is the 
difference the between the probability of sparing this character (when 
presented alone) and the probability of sparing one adult man or woman 
(n = 1 million). For example, the probability of sparing a girl is 0.15 (s.e. 
= 0.003) higher than the probability of sparing an adult man or woman.

1  N O V E M B E R  2 0 1 8  |  V O L  5 6 3  |  N A T U R E  |  6 1
© 2018 Springer Nature Limited. All rights reserved.

ARTICLE RESEARCH
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