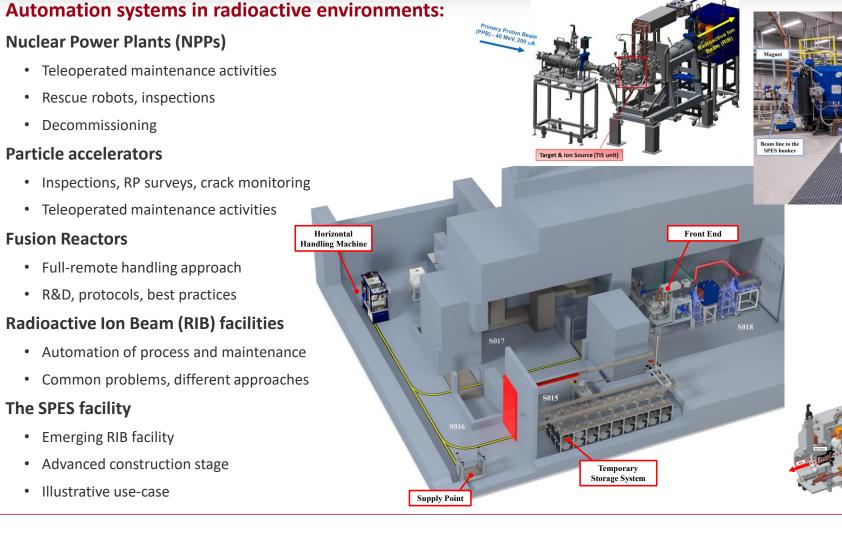
SAFETY-DRIVEN DESIGN OF AUTOMATION SYSTEMS IN NUCLEAR FACILITIES PHD PROGRAM IN MECHATRONICS AND PRODUCT INNOVATION ENGINEERING

COLLEGIO DEGLI INGEGNERI DELLA PROVINCIA DI VENEZIA, 12 APRILE 2025

Ph.D. Candidate:Giordano LilliSupervisor:Prof. Roberto Oboe



Background and Motivation

12 Aprile 2025

Research Aim

UNIVERSITÀ

degli Studi di Padova

investigate the impact of a safety-driven remote handling design approach on the predicted personnel exposure during planned and unexpected maintenance interventions

Objectives

3. Maintenance 2. Upgrade of the 1. Safety assessment review and system optimization

The SPES Remote Handling framework Design consolidation and advancements

CONTROL

MPS

TSS

ннм

Methodology

Two parallel approaches:

- Consolidation of the global architecture
- Consolidation of the machines

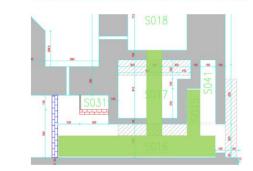
Architecture:

- Consolidation of the SPES target area layout
- Definition of HHM paths, intermediate points, operating stations
- Definition of the MPS interlocks with Front-End, shielding doors, etc.
- Definition of the ACS (Access Control System) interlocks

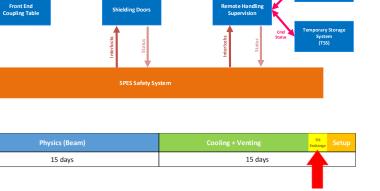
Communication:

• Wi-Fi dual band radiating cable

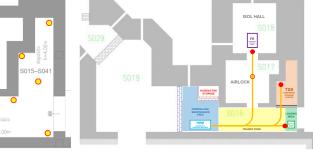
Supervision:


• Set of Pan Tilt Zoom (PTZ) 30x optical zoom cameras

Control:


2. Upgrade of the

system


• Definition of the Remote Handling Supervisor (RHS) architecture

Machine Protection System (MPS)

SAFETY

TSS-S

HHM-

The SPES Remote Handling framework

Design consolidation and advancements

Horizontal Handling Machine (HHM)

Software:

- Modular architecture, atomic sequences
- Optimization of the interactions with the supervisor
- Minimization of the wi-fi data exchange dependency. Critical sequences are executed locally by the onboard PLC.

Energy management:

- Remodulation of HHM batteries: unified AGM battery units coupled with onboard inverter to power the rack
- Automatic charging procedure through a dedicated charging station, no more need for personnel access.

Hardware consolidation:

• Mechanical and cabling consolidation

Temporary Storage System (TSS)

Hardware design:

- Redundant actuation for all the motion axes
- Fault-tolerant design

Software:

- Scalable architecture, state machine based
- Hardware abstraction layer

TO FINAL

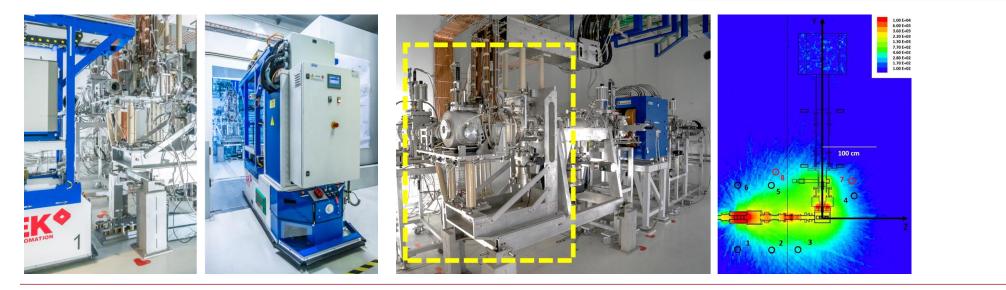
SYSTEM

Probabilistic Risk Assessment (PRA) of SPES remote handling activities

Methodology: combined approach

HAZOP - LOPA analysis: semi-quantitative risk assessment tools usually implemented in the process industry

Focus:


UNIVERSITÀ

Remote handling activities on the SPES Front-End

Goals:

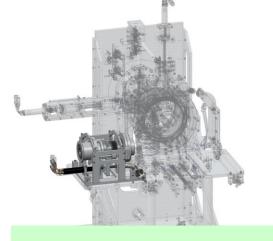
- Identification of critical failure scenarios
- Improvement of the system
- Validation of the proposed safety measures

Risk Classification Matrix		Likelihood								
		А	В	С	D	Ε				
	V	Η	Η	Η	Η	Μ				
ies	IV	Н	Η	Н	М	\mathbf{M}				
Severities	III	Н	Μ	Μ	Μ	\mathbf{L}				
Sev	II	Μ	Μ	М	L	L				
	Ι	М	Μ	L	L	L				

Risk Matrix

1. Safety

assessment


Probabilistic Risk Assessment (PRA) of SPES remote handling activities

Hazard and Operability (HAZOP) Study:

Qualitative risk assessment tool

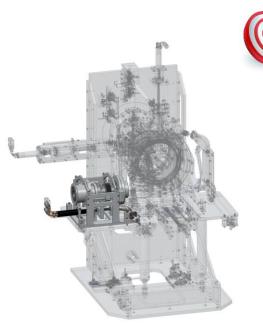
• Example **deviation**: lack of movement

Safeguards

- Periodic replacement of the pneumatic motor
- Diagnostics: check pressure switches, power supply, etc.
- Periodic maintenance and inspection program
- Periodic functional checks
- Backup handling systems
- Operator training and training, use of PPE

Node: PPB and RIB channels							
Deviation: 1. Motion Blocked							
Causes	Consequences	Category	Risk Matrix			Safeguards	Recommendations
	L	· ·	L	S	R	Ŭ	
1. Pneumatic motor failure	1. Remote recovery: finalize the motion using the backup actuator provided by HHM	В	С	Ι	L	A, B, C, D	Installation of air filters. Radiation survey prior to the intervention, Work and Dose Planning; Maintenance intervention optimization;
	2. Manual recovery: finalize the motion using auxiliary handling systems	B/S	С	Ш	М	A, B, C, E, F, G, H, I, J, K	Mantenance intervention optimization,
	3. Maintenance intervention:	B/S	С	IV	Н	A, B, C, E, F,	
	motor replacement (room S018)					G, H, I, J, K, M	
2. Pneumatic supply failure	1. Remote recovery: finalize the motion using the backup actuator provided by HHM	В	С	Ι	L	A, B, C, D	
Ŷ	2. Manual recovery: finalize the motion using auxiliary handling systems	B/S	С	Ш	М	A, B, C, E, F, G, H, I, J, K	
ل ل	3. Maintenance intervention:	B/S	С	Ш	М	A, B, C, E, F,	
	repair the equipment (room S018)					G, H, I, J, K, M	
	4. Maintenance intervention:	B/S	С	Ι	L	A, B, C, E, F,	
	repair the equipment (room S017)					G, H, I, J, K	
3. Mechanical problems	1. Maintenance intervention:	B/S	С	IV	Н	A, B, C, E, F,	
X	inspection and repair (room S018)					G, H, I, J, K, M	
4. Electrovalve hardware failure	1. Maintenance intervention:	В	С	Ι	L	A, B, C, E, F,	
	repair the equipment (room S017)					G, H, I, J, K	
5. PLC hardware failure	1. Maintenance intervention:	В	С	Ι	L	A, B, C, G	11
	repair the equipment (room 1017)						

Probabilistic Risk Assessment (PRA) of SPES remote handling activities


Node: PPB and RIB channels

Layer of Protection Analysis (LOPA)

Semi-quantitative risk assessment tool

- Probability of Failure on Demand (**PFD**):
 - Enabling Conditions (ECs)
 - Independent Protection Layers (IPLs)
 - Conditional Modifiers (CMs)
- Risk acceptability criterion.
 - Target frequency: 1.00E-06 yr⁻¹

Deviation: 1. Motion Blocked													
			ECs	s IPLs 0						CMs			
		Inital frequency [yr ⁻¹]	Facility under maintenance	Control System, MPS, Autotest	Training of specialized operators, Use of PPEs, Procedures	Periodic maintenance, inspection and replacement program	Access Control System (ACS), Radiation monitoring, Personal dosimeters	Remote inspections using the Horizontal Handling Machine (HHM)	Operator Presence	Backup actuation systems	S override	FUTURE Mitigated frequency with all IPLs implemented [yr ⁻¹]	Now Mitigated frequency with partial IPLs implemented [yr ⁻¹]
Initiating Event:	Consequence		Fac	Cor	Tra Use	Peranc	Acc Rac Per	Rer Hoi	Op	Bac	MPS		
1. Pneumatic motor failure	3. Maintenance intervention: motor replacement (room S018)	0.1	0.25	0.1*	0.01*	0.1*	0.1	-	1	0.1	-	2.50E-08	2.50E-04
2. Pneumatic supply failure	3. Maintenance intervention: repair the equipment (room S018)	0.5	0.25	0.1*	0.01*	0.1*	0.1	0.1*	1	0.1	-	1.25E-08	1.25E-04
3. Mechanical problems	1. Maintenance intervention: inspection and repair (room S018)	0.1	0.25	-	0.01*	0.1*	0.1	0.1*	1	-	-	2.50E-07	2.50E-04
											Total:	2.88E-07	6.25E-04

Probabilistic Risk Assessment (PRA) of SPES remote handling activities

Results

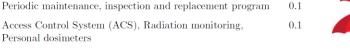
Analysis highlights:

UNIVERSITÀ

DEGLI STUDI DI PADOVA

- 20 hardware components
- 38 failure scenarios over 8 nodes
- 13 safeguards: organizational/technical solutions
- 5 Independent Protection Layers

Outcomes:


- Validation of the proposed Independent Protection Layers
- Validation of the Conditional Modifiers
- Roadmap with next commissioning milestones
 - Design upgrade: backup actuation systems
 - Maintenance assessment, training program, procedures, etc.
 - Software verification
- Identification of nodes with missing IPLs

	10 M
5	
12	
	Contraction of the second
	And a first

			Mitigated Frequency				
LOPA ID	Hazard scenario	Frequency Base Target	Final frequency with all IPLs implemented	Current frequency with partial IPLs implemented			
1	Motion Blocked: PPB or RIB line. Operator intervention required. Direct exposure to high levels of radiation.	1.00e - 6	2.88e - 7	6.25e - 4			
2	Motion Blocked: PPB or RIB gate valve. Operator intervention required. Direct exposure to high levels of radiation.	1.00e - 6	2.50e - 7	2.50e - 5			
3	Diagnostic fault: PPB or RIB motion axis. Operator intervention required. Direct exposure to high levels of radiation.	1.00e - 6	2.55e - 7	7.50e - 4			
4	Motion Blocked: extraction electrode. Operator intervention required. Direct exposure to high levels of radiation.	1.00e - 6	$2.88e - 6^*$	6.25e - 3			
5	Diagnostic fault: extraction electrode. Operator intervention required. Direct exposure to high levels of radiation.	1.00e - 6	$3.00e - 6^*$	7.50e – 3			
6	Motion Blocked: connections. Operator intervention required. Direct exposure to high levels of radiation.	1.00e - 6	6.25e - 7	6.25e - 3			
7	TIS drop along route S018-S015: HHM gripper.	1.00e - 6	$1.25e - 6^{*}$	1.25e - 2			
Indeper	ndent Protection Layer (IPL)		PFD				
Control	System, MPS, Autotest		0.1				
Trainin	g of specialized operators, Use of PF	Es, Procedur	es 0.01				

Periodic maintenance, inspection and replacement program

Personal dosimeters

Remote inspections using the Horizontal Handling Machine 0.1(HHM)

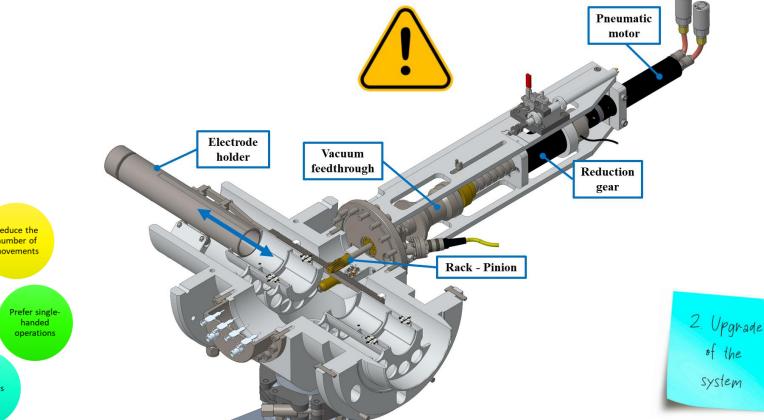
Methodology: Design for maintenance

Vulnerabilities of the existing system:


• Position:

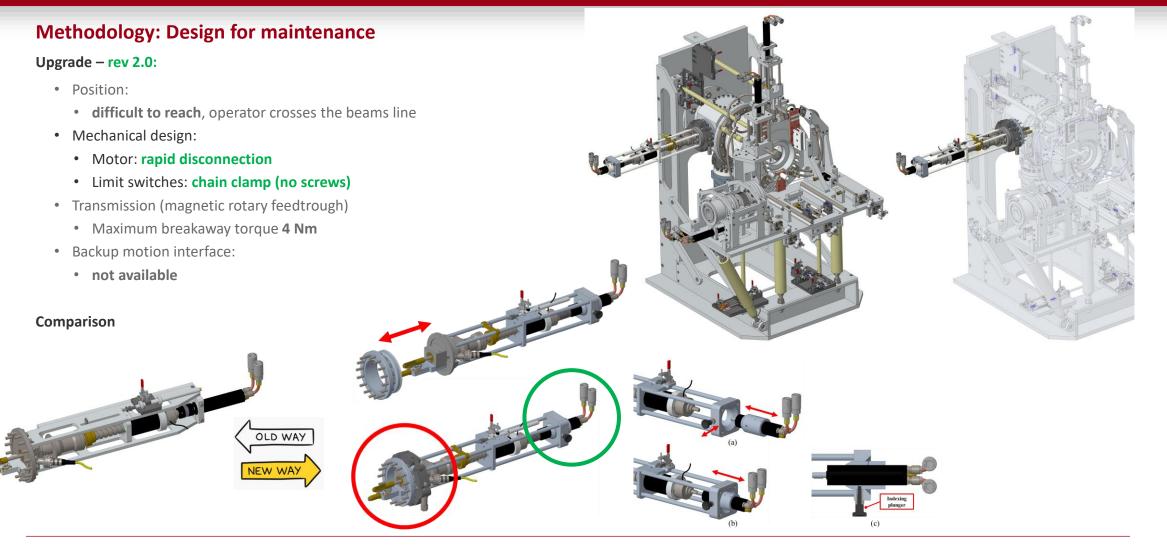
UNIVERSITÀ

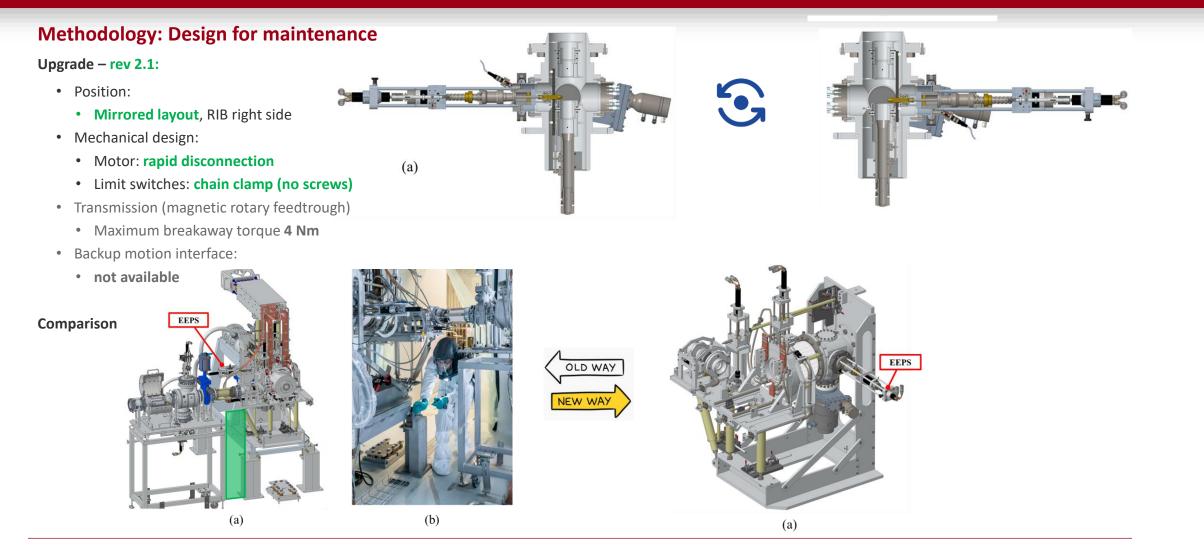
- difficult to reach, operator crosses the beams line
- Mechanical design:
 - Motor: 2 screws
 - Limit switches: vacuum CF flange, 16 screws
- Transmission (magnetic rotary feedtrough)
 - Maximum breakaway torque 4 Nm
- Backup motion interface:

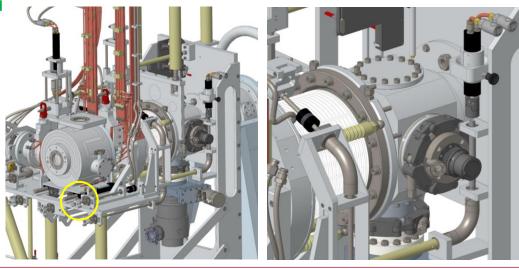


Maintainability guidelines

Require


operation as


The Extraction Electrode Positioning System preliminary design upgrade

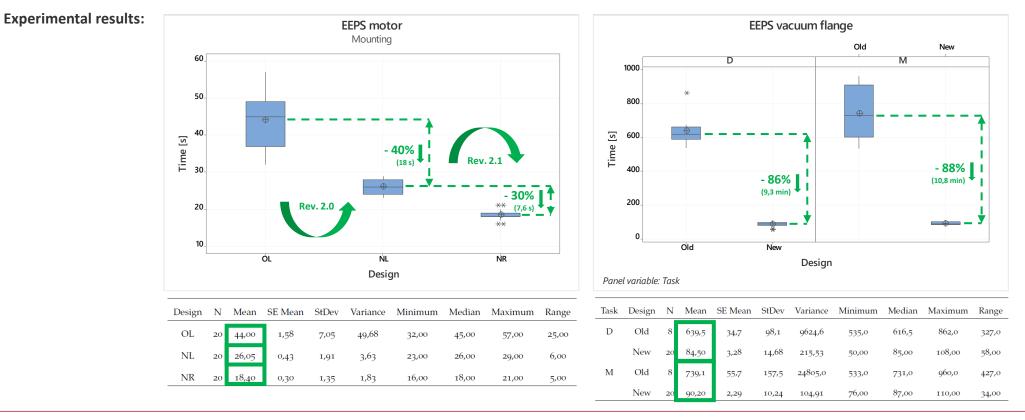


Methodology: Design for maintenance

Concept design – rev 3.0:

UNIVERSITÀ

- Position:
 - Mirrored layout, RIB right side
- Mechanical design:
 - Motor: rapid disconnection
 - Limit switches: chain clamp (no screws)
- Transmission (magnetic rotary feedtrough)
 - Maximum breakaway torque 4 Nm -> 9 Nm
- Backup motion interface:
 - implemented



Results

Maintenance-oriented design upgrade

- Revision 2.0 and 2.1 are currently under construction,
- The benefits introduced by the proposed design have been validated experimentally

Maintenance Assessment

optimization of critical activities in high-radioactive environment

Methodology

Experimental campaign

Screening session

Survey session

- 500+ maintenance tests:
 - 10 operators
 - 14 components (pneumatic motors, limit switches, potentiometers)
 - 2 tasks: mounting and dismounting
 - 2 runs
- Time estimation
- Factorial analysis

Comparison session

- Tool A vs Tool B
- Old design vs New design

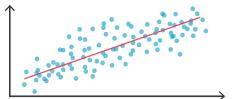
Definition of procedures

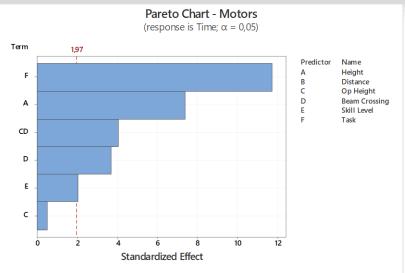
Identification of operational issues

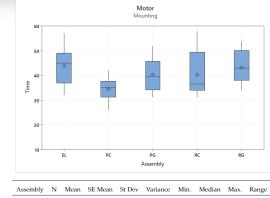
SAFET

Maintenance Assessment

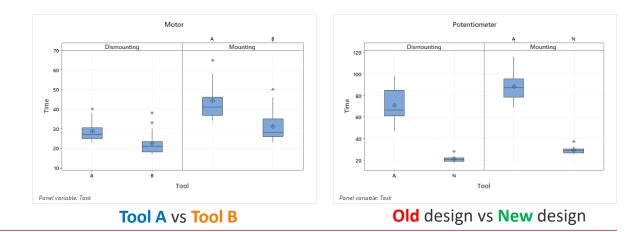
optimization of critical activities in high-radioactive environment




Results


Survey Session

Regression analysis

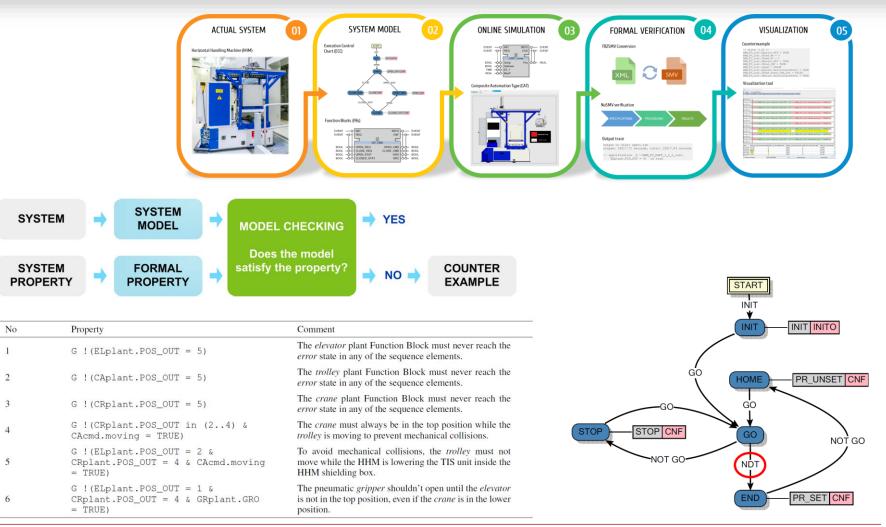

- Component height
- Operator height
- Beam crossing
- Skill level

Assembly	N	Mean	SE Mean	St Dev	Variance	Min.	Median	Max.	Range
EL	20	44.00	1.58	7.05	49.68	32.00	45.00	57.00	25.00
PC	20	34-45	1.08	4.82	23.21	26.00	35.00	42.00	16.00
PG	20	40.30	1.40	6.27	39.27	31.00	39.50	52.00	21.00
RC	20	40.25	1.95	8.74	76.41	31.00	36.50	58.00	27.00
RG	20	43.25	1.48	6.60	43.57	34.00	43.00	54.00	20.00

Comparison session

2-sample t test

- Statistical difference in datasets:
 - Tool A vs Tool B
 - Old design vs New design
- Design upgrade validation


IEC 61499 remodeling and verification of remote handling control software

Methodology

Formal verification

- Conversion of Function Blocks (XML) to SMV code
- Linear Temporal Logic (LTL) specifications
- NuSMV model checker
- Effect of introduction of NDTs

IEC 61499 remodeling and verification of remote handling control software

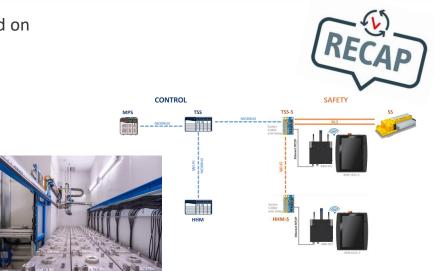
Results START **Formal verification** • LTL properties verified GOCA_06 CNF GOCA 06 CN • Challenge: spot potential collisions due to NOT CAM & C... NOT CAM & C ... parallel execution of movements RESET CNF RESET CNF Counterexample visualization _01_04_CA_06 GOCR_04 CNF GOCR_04 CNF 01 04 CA 06 State explosion problem NOT CRM & C_ NOT CRM & C... NOT CRM & C... NOT CRM & C... CLGR CNF CLGR CNF CLGR CNF **NuSMV** execution time GOCR_01 CNF GOCR 01 CN NOT CRM & C. NOT CRM & C... Specification 1 GOCA_03 CNF GO_CA_CR_EL CNF Specification 2 Specification 3 NOT CAM &.. (NOT CRM & Specification 4 Specification 5 GOCR 06 OPGR CNF Specification 6 NOT CRM &... Scenario Value LTL specification FALSE G 1(HHM_FV_inst.CRplant POS_OUT=4 & HHM_FV_inst.CAcmd.moving = TRUE). 8 06 CA 25 NDT in elevator plant NOT ELM & E. NDT in trolley plant ag = TRUE)))) 20 NDT in crane plant OPGR CNF a = TRUE NDT in gripper plant ing = TRUE))) NDT in elevator and trolley plants NDT in elevator, trolley and crane plants NDT in elevator, trolley, crane and gripper plant ((HHM FV inst.CRplant.POS OUT = 4) & (HHM FV inst.CAcmd.moving = TRUE))) (HHM FV inst, CRolant, POS OUT = 4) & (HHM FV inst, CAcmd, moving = TRUE)) Connario n Scenario n. 5 Scenario n. 6 Scenario n. 7 HHM_FV_inst.ELcmd.SET... HHM_FV_inst.EL NDTs

Results and Discussion

Motivation:

Università

Remote Handling design protocols are increasingly important, conventional approaches are based on functional specification.


Contribution of the presented study:

SPES constitutes an illustrative use-case that can be used to demonstrate the advantages of:

- Remote handling consolidation
- Probabilistic Risk Assessment
- Maintenance-oriented design upgrade
- Assessment and optimization of maintenance activities
- Formal software verification

Research limitations:

- Missing integration of collected data on maintenance tasks duration with the estimated dose rate in the working position
- The Probability of Failure on Demand (PFD) does not take into account radiation effects
- Accuracy of the IEC 61499 formal verification model of the Horizontal Handling Machine (HHM)

Main outcome

Early incorporation of **Probabilistic Risk Assessment (PRA)** techniques during the design process of automation systems in nuclear facilities can provide **substantial benefits** to the reduction of personnel **exposure**

Next research steps

- Monte-carlo simulation of the environmental dose rate to finetune the severity estimation
- Dynamic Fault-Tree Analysis (DFTA) to better estimate the likelihood of failure events
- Engineering of the novel concept design of the Extraction Electrode Positioning System
- Enrichment of the IEC 61499 formal verification model, creation of a digital-twin of safety-critical remote handling systems.

Conclusions and future work

Thank you!