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The cryosphere is a main component in climatic and hydrological processes, interacting 

with the other parts of the climate system. Defined as the portion of Earth where water is in its 

solid form, it is a sensitive indicator of changes in climatic conditions. In particular, the arctic 

regions have been affected by the strongest variations in climate parameters, presenting the 

highest increment in average temperature recorded on the planet. One of the components of the 

cryosphere are the Antarctica and Greenland ice sheets, holding the 70 of freshwater on Earth 

and being crucial in the assessment of water resources. Surface mass balance and ice loss of the 

biggest masses of ice on the Earth are also a direct term into the mass balance for the calculation 

of sea level rise. Long term analysis of the parameters indicating changes in climatic conditions 

are thus of paramount importance. One of these parameters is the surface melting on glaciated 

surfaces. 

Surface melting plays a key role on the ice sheet surface mass balance and ice dynamics 

with changes in surface melting spatial patterns potentially affecting hydrological processes, 

supraglacially, englacially and subglacially. Passive microwave (PMW) brightness temperature 

observations are of paramount importance in studying long-term climate and earth surface 

processes. Specifically, PMW data are characterized by large temporal coverage (1979-2018) and 

high temporal resolution (at least daily) due to the capability of microwave data to be collected 

in all-weather conditions. However, a major limitation of PMW datasets has been the relatively 

coarse spatial resolution. 

Here, after a presentation of the impact of climate change on cryosphere components and 

a summary of basic principles of passive microwave remote sensing, describing the 

electromagnetic properties of snow and ice, we assess the potential of an enhanced spatial 

resolution (3.125 km) passive microwave dataset recently made available through the NASA 

MeASUREs program. 

At first, we present the data characteristics, compare data from different sensors providing 

linear relations to intercalibrate SMMR and SSM/I sensors over Greenland and Antarctica ice 

sheets in order to build the full 37 years dataset of brightness temperatures. 

Then, we assess five different threshold-based melt detection algorithms by using 

surface/air temperature data from automatic weather stations and compare the outputs of the 
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selected algorithms applied to the high resolution dataset with the coarser resolution data by 

means of the outputs of a regional climate model (MAR). 

Finally, we discuss long term trends of the main indicators of melting season at pixel scale, 

melt onset date (MOD), melt end date (MED) and melt duration (MD), and synthetic parameters, 

mean melt duration (MMD), melting index (MI) and maximum melting surface (MMS) obtaining 

95% statistically significant trends, with higher confidence on the results obtained for Greenland. 

Then, the example of the extreme melt event occurred in 2012 is presented. 

We showed the capability of the enhanced resolution product to detect and map surface 

melting over Greenland and Antarctica, providing a melting maps dataset at unprecedent spatial 

resolution and temporal coverage. 
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La criosfera è uno degli elementi principali del sistema climatico, interagendo le altre 

componenti di questo ed influenzando i processi idrologici. Definita come la frazione della terra 

in cui l’acqua si trova al suo stato solido, è una importante sentinella dei cambiamenti del sistema 

climatico, come indicano sempre più recenti studi ed osservazioni, anche nel panorama italiano. 

Si pensi al processo di ritiro dei ghiacciai della catana Alpina, primo tra tutti il ghiacciaio 

dell’Adamello (Ranzi et al., 2010). Riportano però i più significativi cambiamenti i ghiacciai nella 

regione Artica, zona del globo in cui è stato misurato il più forte aumento della temperatura media. 

Tra le parti della criosfera polare, le calotte di ghiaccio di Groenlandia ed Antartide rappresentano 

le più grandi riserve di acqua dolce del pianeta, conservandone in stato solido il 70%. Il loro 

studio è quindi fondamentale in un’ottica di gestione delle risorse idriche. Inoltre, il contributo 

del bilancio di massa superficiale e le perdite di grandi masse di ghiaccio sono un diretto 

contributo nel calcolo dell’innalzamento del livello medio del mare. Sono quindi di grande 

importanza le analisi a lungo termine dei parametri che possano indicare cambiamenti delle 

condizioni climatiche. Uno di questi parametri è la fusione superficiale del manto nevoso sulle 

superfici glacializzate. 

 La fusione superficiale svolge infatti un ruolo chiave per le calotte di ghiaccio sia per 

quanto riguarda il bilancio di massa superficiale, sia per la valutazione dinamica dei ghiacciai. La 

neve, una volta fusa e trasformatasi in deflusso superficiale può infatti defluire sulla superficie 

glacializzata oppure, tramite passaggi all’interno della massa ghiaccio (i mulini glaciali), 

raggiungere zone intermedie o basali delle calotte, influenzando e accelerando i processi 

idrologici e dinamici a livello supraglaciale, endoglaciale e subglaciale. 

Il telerilevamento tramite a sensori a microonde passivi, che misurano la temperatura di 

brillanza naturalmente emessa dalla superficie terrestre, svolge un ruolo di primaria importanza 

nello studio dei processi climatici e le variazioni di questi su grande scala temporale e spaziale. 

Nello specifico, i dati ottenuti da telerilevamento satellitare a microonde passivo sono 

caratterizzati da una grande copertura temporale (1979-oggi), una vasta copertura spaziale che li 

rende applicabili a studi su larga scala e un’alta risoluzione temporale grazie alla proprietà delle 

onde elettromagnetiche nelle frequenze delle microonde di non essere influenzati dalla copertura 

delle nuvole e alla possibilità di ottenere anche misure notturne non essendo necessaria la 
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radiazione solare per i sensori passivi. Il limite principale di questi sensori era la relativamente 

bassa risoluzione spaziale. 

In questo lavoro di tesi, dopo una introduzione relativa agli impatti del cambiamento 

climatico sul ciclo idrologico, le risorse idriche e, in particolare, la criosfera ed un riassunto dei 

principi generali del telerilevamento passivo, descrivendo le proprietà elettromagnetiche di neve 

e ghiaccio, vengono presentate le potenzialità di un nuovo dataset a migliorata risoluzione 

spaziale recentemente reso disponibile dal programma NASA MeASUREs. La risoluzione 

disponibile tramite questo prodotto varia a seconda della frequenza del canale selezionato, 

raggiungendo un miglioramento massimo da 25 km a 3.125 km.  

Per prima cosa sono stati presentate le caratteristiche del dataset, con attenzione alla banda 

selezionata (37 GHz, polarizzazione orizzontale). Sono stati poi confrontati i dati provenienti dai 

diversi sensori selezionati (SMMR, SSM/I-F08, SSM/I-F11, SSM/I-F13 e SSMI/S-F17) e 

calcolate le regressioni lineari tra questi per poter inter-calibrare i diversi sensori nei casi di 

Groenlandia ed Antartide per poter costruire la serie temporale delle mappe di temperatura di 

brillanza per tutti i 37 anni disponibili. Viene poi discussa la disponibilità spazio-temporale dei 

dati, mostrando la necessità di interpolare per ottenere le mappe complete a scala giornaliera. 

In seguito, vengono presentati ed implementati cinque diversi algoritmi basati sul 

principio di superamento di soglia e confrontate la capacità di questi di individuare contenuto 

liquido nel manto nevoso con dati di temperatura superficiale raccolti tramite stazione 

meteorologica. Viene poi presentato un confronto tra gli stessi dati alle risoluzioni 3.125 km e 25 

km, confrontandoli con i risultati ottenuti da un modello atmosferico regionale (MAR). 

Sono stati infine calcolati i principali indicatori utilizzati in letteratura per analizzare le 

variazioni delle stagioni di fusione avvenute nel corso delle ultime decadi, sia a scala locale (pixel 

per pixel), sia a livello generale su tutta la superficie glacializzata di Groenlandia e Antartide 

tramite i più usati parametri sintetici.  

In particolare, a scala locale sono stati calcolati la data di inizio della fusione (melt onset 

date, MOD), di fine della fusione (melt end date, MED) e durata della fusione (melt duration, 

MD); per quanto riguarda i parametri sintetici sono stati analizzati la durata media di fusione 

(mean melt duration, MMD), la superficie cumulata di fusione (melting index, MI) e la superficie 

massima di scioglimento (maximum melting surface, MMS) calcolata come la superficie in 

fusione per almeno un giorno di Groenlandia ed Antartide. Sono stati calcolati i trend 

statisticamente significativi al 95% sugli anni disponibili, con maggiore confidenza sui risultati 

ottenuti per la Groenlandia rispetto all’Antartide, a seguito di un confronto con i risultati 



5 

 

presentati in letterature. Infine, è stato presentato il caso emblematico dell’evento di fusione 

straordinario avvenuto nel luglio 2012 in cui il 99% della superficie della Groenlandia era in 

fusione. 

In conclusione, tramite questo lavoro di tesi è stata dimostrata la potenzialità e 

l’applicabilità degli algoritmi utilizzati ai nuovi dati ad alta risoluzione spaziale 

nell’identificazione di contenuto di acqua liquida sulle calotte di ghiaccio di Groenlandia ed 

Antartide, è stato creato un dataset (a breve disponibile per download e utilizzo) delle mappe di 

fusione superficiale caratterizzato da copertura temporale e risoluzione spaziale senza precedenti 

e sono state studiati gli effetti delle modificazioni climatiche delle ultime decadi ai capi dei due 

emisferi sui processi di scioglimento superficiale. 
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“Spring thaw strikes early in Arctic region”, New York Times, June 20th, 2019. 

“Groenlandia, il ghiaccio si scioglie. E i cani da slitta corrono sull'acqua”, La Repubblica, June 

18th, 2019. 

“What to know about the rapid melting of the Greenland ice sheet, a significant contributor to 

rising sea levels”, ABC News, June 20th, 2019. 

 

 

 

Figure 1: The New York Times title (June 20th, 2019) 

 

These are only a few of the many articles and titles that filled all the newspaper pages at 

the end of June (2019), after the record of an extremely early and extent melt event occurred in 

Greenland on June 12th and the emblematic picture reported in Figure 2 has been shared, travel-

ling all around the world. Even if it has been proven that the famous picture does not represent 

any climate change or gravity of the problem, since a similar picture has been taken also in 1984 

by the scientist Heide Jørgensen (https://www.ilpost.it/2019/06/26/foto-cani-slitta-acqua-1984/), 

this year summer melts started earlier than usual due to a stagnant zone of high-pressure air that 

brought warm air from the south. This is only the last of other highly significant melt events that 

affected Greenland and the Arctic in general, a clear evidence and signs of the modifications in 

climatic conditions, attracting the interest not only of people from the scientific area. In fact, there 

is a strong effort coming in this regard also from people of the religious sphere. An emblematic 

example is Pope Francis, who defined in his Laudato sii the climate as “a common good, belong-

ing to all and meant for all”, stressing the importance of human activities and lifestyle. But atten-

tion does not come from the only Catholic world. Also people from Islam and the Orthodoxes 

spent some words in this regard, for example in His All-Holiness Ecumenical Patriarch Barthol-

omew at the Opening of the Ecological Symposium: “We must recall that the climate change is 

https://www.ilpost.it/2019/06/26/foto-cani-slitta-acqua-1984/
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an issue that is closely related to our current model of economic development. An economy that 

ignores human beings and human needs inevitably leads to an exploitation of the natural environ-

ment. Nevertheless, we continue to threaten humanity’s existence and deplete nature’s resources 

in the name of short-term profit and benefit. How can we possibly imagine a sustainable devel-

opment that comes at the expense of the natural environment?”. For what concerns international 

governments, they started taking actions since 1992 with the UN Conference on Environment 

and Development, then with Kyoto Protocol in 1997 till the last Paris Climate Agreement of 2015. 

Hence, climate change effects are an everyone’s area of interest and a crucial component of now-

adays policies and political discussions, being no longer negligible and affecting horizontally 

every sector of our society.  

 

 

Figure 2: The viral picture of dogs dragging a sled in meltwater in Greenland (Steffen M. Olsen/Denmark’s 

Meteorologiske Institut, via Associated Press). 

 

Since the last century, variations in the most significant climate variables have been ob-

served on both temporal and spatial scales. Climate change is defined according to IPCC as the 

modifications attributed directly or indirectly to human activity that alters the composition of the 

global atmosphere and which is in  addition to natural climate variability  observed over compar-

ative time  periods. Causes in modifications in climatic conditions can be divided in natural and 

anthropogenic (or human, or man-made) causes. The formers account volcanic eruptions, ocean 
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currents, Earth orbital changes or variations in Solar activity; the latters comprehend the incre-

ment of greenhouse gasses emissions driven by deforestation, coal mining, burning of fossil fuels, 

industrial processes, agriculture etc. Among the greenhouse gasses, carbon dioxide emissions 

take the largest percentage of the total, accounting for the 64% of the emissions. The greenhouse 

gasses increment in the atmosphere (in particular CO2) have been recorded by NOAA since the 

middle of the past century (https://www.esrl.noaa.gov/gmd/ccgg/trends/). The sun’s visible 

wavelengths of radiation can easily reach the Earth surface passing through the atmosphere and 

a portion of this energy (48%, almost 163 W/m2) is absorbed by the surface. Some of this energy 

is then emitted by the earth as infrared radiation which can be absorbed by water vapor, carbon 

dioxide and methane in the atmosphere creating a second source of radiation emitted back to the 

Earth surface. If the amount of greenhouse gasses is in their natural concentration, this effect is 

called natural greenhouse effect and it is the responsible of the average global temperature rang-

ing around 15 °C. On the other hand, if the concentration of greenhouse gasses increases, the 

amount of energy kept into the atmosphere increases as well, enhancing the greenhouse effect. 

The greenhouse effect, causing an increment of the average global temperature, is not the only 

effect coming from increased concentration of carbon dioxide in the atmosphere. In fact, a higher 

concentration in the atmosphere changes also the balance at air-ocean interface, increasing the 

CO2 passing to the ocean. An increment of carbon dioxide into a water body causes an acidifica-

tion of it and it has been recorded that nowadays the oceans are more acid than 50 years ago. By 

means of climate models of NASA Goddard Institute for Space Studies (GISS), it has been proven 

that the increment of global average temperature can be explained only considering both natural 

and anthropogenic causes. Actually, by looking at the model results, the natural factors did not 

change significantly in the past century. The main driver has to be accounted by the emission of 

greenhouse gasses.  

Among the large variety of effects of climate change, the water cycle is one of the most 

crucial aspects. Its response to changes in mean temperature is driven at first by the water vapor 

climate positive feedback loop, regulated by Clausius-Clapeyron equation of water vapor pres-

sure in the atmosphere. An increment of average temperature allows the atmosphere to hold more 

water vapor that acts as a greenhouse gas, absorbing energy and providing a further increment in 

temperature.  

Moreover, water cycle is strongly affected by modifications of the cryosphere. In fact, it 

plays a major role in the adjustment of the global climate system (Barry and Gan, 2011) and many 

studies suggested that glaciers and polar ice caps are large organic carbon reservoirs. Glaciers, 

https://www.esrl.noaa.gov/gmd/ccgg/trends/
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ice sheets and ice caps are also frozen reservoirs whose runoff is mainly controlled by tempera-

ture; the increment in surface temperature would translate in reduction of freshwater stored in 

these solid reservoirs increasing runoff. Thus, observing and monitoring components of the cry-

osphere is of crucial importance to understand and make previsions on water resources.  
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Ice sheets and glaciers are the largest reserve of freshwater on Earth, accounting for almost 

the 70% of the total. Their role is crucial in the study of hydrological cycles and water resources 

management.  

In this chapter the different parts of the cryosphere are presented and described, followed 

by the effects of climate change in polar region. Finally, it is presented the effect of ice sheet 

melting on sea level rise.  

 

 
 

The cryosphere is the portion of earth where water is in its solid form, either seasonally or 

annually (Tedesco, 2015). It is composed by snow cover, glaciers, ice sheets, ice shelves, ice 

caps, freshwater ice, sea ice, icebergs, permafrost and ground ice. Some of these components are 

defined by glaciologists as perennial and represent the slowly changing/transforming component 

(Kargel et al., 2014). 

 

 

Figure 3: Representation of the cryosphere components of Earth 

(http://maps.grida.no/go/graphic/cryosphere) 

http://maps.grida.no/go/graphic/cryosphere
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Here we briefly describe the different components of the cryosphere represented in Figure. 

1) Frozen ground (seasonally frozen and permafrost) 

This is the most extensive component of the cryosphere (55 million km2 in the Northern 

Hemisphere), occurring when the mean annual air temperature is lower than -1°C. The top part 

of the layer is defined as active layer and plays a key role in the hydrological cycle. 

2) Snow 

Snow is the second largest portion of the cryosphere with a maximum extent of 47 million 

km2. Its large coverage and high albedo make snow a major player in reflecting solar radiation 

back to space and regulate the climate on earth. Moreover, the presence of snow in mountain 

areas represents a big component of summer runoff, during the melting season. 

3) Sea ice 

Approximately one-ninth of the world’s oceans are covered by sea ice and, as snow, is an 

extremely sensitive indicator of climate change since heat loss through open water is roughly 100 

times the value through thick ice. Sea ice is mainly divided into first-year (FY) ice and old ice, 

divided in second-year (SY) ice and multi-year (MY) ice. The last types are FY ice survived at 

least at one melting season.  

4) Ice sheet 

Ice sheets are a mass of land ice of continental size thick enough to cover the underlying 

bedrock topography. If during glacial periods there were more ice sheets, today there are two ice 

sheets only: Antarctica and Greenland. Ice sheets are a major component of world water resources 

balance, holding 77% of freshwater (90% for Antarctica and 10% for Greenland).  

5) Ice shelf 

Glaciers flowing to coastal areas create a thick floating slab of freshwater ice. Almost the totality 

of ice shelves is in Antarctica, being the most readily part contributing to sea level rise. 

6) Glacier 

Mass of ice on land flowing downhill and balanced by ablation zone (net losses areas, negative 

surface mass balance), accumulation zone (where snow falls, generally higher altitudes) and 

percolation zone (where meltwater percolate into the snowpack). The equilibrium line altitude is 

the elevation where the surface mass balance turns from negative to positive. 

7) Ice cap 

Similarly to ice sheets, ice caps are land ice but of a smaller extension with a dome shape and 

radial flow. 
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In the following parts of this chapter interaction of the cryosphere and the climate system will be 

described, focusing on Greenland and Antarctica ice sheets (objective of this work) and looking 

at their contribution to sea level rise. 

 

 
 

Modifications in climate conditions have been observed all around the planet. However, 

the experienced changes are not spatially homogeneous, producing different (and sometimes 

opposite) effects according to the location. Moreover, according to the fourth IPCC report, the 

high latitudes are the most likely to be affected by the largest changes. In this part similarities and 

differences of climatic changes in the two polar regions are presented and discussed. 

The two polar regions have been observed to present different changes over the last 

decades. An important changing component of the polar cryosphere, in opposite directions 

considering the Arctic and Antarctica, is sea ice. In fact, sea ice is generally strictly seasonal in 

Antarctica, growing in Antarctic winter and melting in summer. On the other hand, Arctic sea ice 

comprehend multi-year ice and it used to survive in summer. However, in the last decades, if 

Antarctic sea ice is growing, Arctic sea ice is performing a significant reduction, shrinking 

dramatically. One of the main reasons of these modifications is the different conditions in 

topography and land/sea distribution. While the North Pole is characterized by the presence of 

the Arctic Ocean, leading to a higher net solar radiation in summer, the presence of Antarctic ice 

sheet at the South Pole reduces the albedo positive feedback. The ice-albedo feedback is one of 

the greatest responsible of the polar amplification effect. This process is a positive feedback 

involving the net incoming solar radiation and its relation with the presence of sea ice. Sea ice 

has a higher albedo than ocean water, leading to a smaller amount of solar radiation absorbed by 

the surface. With an increment of average temperature, the presence of sea ice in extent and 

duration is decreased, leading to a higher exposition to solar radiation of a lower albedo surface. 

As a consequence, the net energy balance is positive leading to a further increment of temperature 

and a following further decrement of sea ice presence. This is a positive feedback, one of the most 

difficult processes to be implemented in circulation models and a key point in the understanding 

how melting of the parts of the cryosphere and climate change are related. In fact, the albedo 

feedback can be strongly affected by the duration and the extension of surface melting on the ice 
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sheet. This because the presence of liquid water in the snowpack makes it undergo metamorphosis 

that increase the size of snow particles, reducing the albedo of the surface.  

As a result, it has been recorded far larger temperature anomalies at the highest latitude of 

the northern hemisphere with respect to the southern. In addition, the effects on atmospheric 

circulations of the Antarctic ozone hole increased the westerly winds over the Southern Ocean 

(Turner and Overland, 2009).  

 

 

Figure 4: Arctic sea ice extent underwent a strong decline from 1979 to 2012 and Antarctic sea ice underwent a 

slight increase, although some regions of the Antarctic experienced strong declining trends in sea ice extent. The 

solid lines indicate 12-month running averages, while the dotted lines indicate the overall trend. Units of extent are 

shown as standard deviations, which refers to the extent of change from the average. (Source: National Snow and 

Ice Data Center). 

  

Moreover, Arctic sea ice is a floating platform over the Arctic Ocean, being highly 

vulnerable not only by the increased occurrence of strong storm events that could break the sea 

ice but also by the increasing ocean temperature. With reference to sea ice, the Arctic is becoming 

much like the Antarctic, having more seasonal sea ice. In fact, Stroeve & Notz (2018) found that 

Arctic sea ice decreased in extent, age and thickness. However, after a long time (almost 3 

decades) positive trend, Parkinson (2019), using passive microwave records, found that a 
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precipitous decline in the last 5 years, reaching the minimum in 2017. Still, considering the last 

4 decades, Antarctic sea ice presents a positive overall trend. 

Hence, according to satellite measurements and climate models analysis, the behavior of 

the two Poles is responding oppositely to climate change. 

 

 

 

Antarctica and Greenland are the only nowadays existing ice sheets, holding the 77% of the 

total freshwater on Earth and being, respectively, the first and the second largest land ice masses.   

Greenland ice sheet (GrIS), the largest ice mass of Northern Hemisphere, has a glaciated surface 

estimated between 1,801,000 km2 and 1,824,000 km2; on the other hand, Antarctic ice sheet (AIS) 

covers approximatively an area of 14,000,000 km2.  

The thickness of the ice sheets can reach values up to 3 km for Greenland and overcomes 4 

km in Antarctica, as shown in Figure showing data from Antarctic Mapping Toolbox (Greene et 

al., 2016) and bedmachine (Morlighem et al., 2017).  

 

 

Figure 5: On the left, Antarctic ice thickness (m). On the right, Antarctica bed elevation. To be noticed that West 

Antarctica bedrock is below sea level. Studies on stability of this part of the continent are crucial for sea level rise 

estimates. 
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Figure 6: On the left, Greenland ice thickness (m). On the right, Greenland bed elevation. 

 

Due to their large volumes and areas, Greenland and Antarctica Ice sheets take part in the 

influencing factors of global weather and climate over timescales of days to millennia (Kargel et 

al., 2014). Measurements of ice mass changes are crucial to better understand rates and variations 

of processes in climate system and sea level rise. According to GRACE (Gravimetry Recovery 

and Climate Experiment) data, satellite mission recording changes in Earth’s gravitational field, 

an average of 281 gigatons of ice per year have been lost by Greenland and 125 gigatons per year 

by Antarctica.  

The direct loss of land ice towards the oceans is a direct positive term of the ocean mass 

balance in the estimation of the sea level rise. According to the IPCC report (2009), the estimated 

sea level rise for the next century would be, depending on the considered scenario and its 

uncertainties, ranging between 30 cm and 1 m. Sea level rise is driven by two major components: 

the thermal and salinity expansion (called thermosteric and halosteric rise, together steric rise) 

and the ice losses from glaciers and ice sheets (eustatic rise). According to Mengel et al., PNAS, 

2016, at current state thermal expansion contribution accounts for the 53% of the average sea 

level rise, continental glaciers mass loss for 21%, Greenland ice sheet for 21% and Antarctica for 
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5%. The future projections according to RCP 8.5 IPCC scenario estimates that the thermal 

expansion contributions will be the 31%, the continental glaciers will account for the 11%, 

Greenland for the 37% and Antarctica for 21%. Rignot et al. (2011) found that the contribution 

of both GrIS and AIS  to sea level rise is accelerating (21.9±1 Gt/yr2 for Greenland and 14.5±2 

Gt/yr2 for Antarctica), three times faster than for mountain glaciers and ice caps (12±6 Gt/yr2). 

Thus, if nowadays Antarctica ice sheet mass loss plays a minor contribution to sea level rise 

if compared with thermal expansion and Greenland ice sheet mass loss, in the next centuries 

(2200-2300), if these trends continue, its role will become dominant ad will likely exceed the 

IPCC report projection (Rignot et al., 2011). 

 

 

Figure 7: Greenland and Antarctica ice mass loss from GRACE observations. Noticeable are the negative trends 

(light blue) in some areas of Antarctica, showing the higher stability of the Southern Hemisphere (The Earth 

Observer, May 2018). 
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The thermal expansion is not directly dependent on mass addition to the ocean but depends 

on changes in water temperature changing the density of the water. The other factor affecting 

seawater density is the salinity, being inversely proportional to the expansion. According to 

Wadhams and Munk (2004), the equivalent steric sea level is computed as 

𝛿ℎ𝑠𝑡𝑒𝑟𝑖𝑐 = − ∫ 𝑑𝑧
𝛿𝜌

𝜌
= 𝛿ℎ𝑇 + 𝛿ℎ𝑆 = (0.5 + 0.05) 𝑚𝑚/𝑦,     (1) 

Where  𝛿𝜌/𝜌 = −𝛼𝛿𝑇 + 𝛽𝛿𝑆 is the variation of density due to the contributions of temperature 

changes and salinity changes, parameter.  

Consider a global mixed ocean of depth h and density 

𝜌 = 𝜌fresh + ∆𝜌 = 1000 + 27 = 1027 Gt/km3,       (2) 

where ∆𝜌 is the incremental density associated with salinity. Continental melting adds a layer dh 

of fresh water (to include melting sea ice we would need to take into account the expansion of 

the fluid ocean domain into the volume previously occupied by the ice). The salinity of the mixed 

ocean is then slightly reduced in the ratio 

𝛿𝜌/∆𝜌 = −𝛿h/h,           (3) 

In terms of the traditional representation by the steric sea level we have 

𝛿h/h = −𝛿𝜌/∆𝜌 = −(𝜌/∆𝜌)(𝛿𝜌/𝜌) = 36.7𝛿hs/h.      (4) 

For what concerns the mass loss coming from the ice sheets and the contribution to sea level 

rise, in order to compute the sea level equivalent (SLE) of the mass loss of Greenland and 

Antarctica, it is necessary to take into account ice, pure water and sea water densities 

 

 Greenland Antarctica 

Total Mass Loss [Gt] 3748 1878 

Ice density [Gt/km3] 0.9167 0.9167 

Volume loss [km3] 4088.58 2048.65 

Ocean surface [km2] 361800000 361800000 

SLE [mm] 11.30 5.66 

Record period GRACE 

[months] 
172 172 

SLR [mm/month] 0.07 0.03 

SLR [mm/year] 0.79 0.40 

 

Table 1: Greenland and Antarctica ice mass loss contribution to sea level rise according to GRACE measurements. 

 

Considering that the oceans cover an area of 3.618x108 km2, according to the estimates 

previously reported about the trend in mass loss measured by GRACE the sea level rise due to 
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the loss of mass from Greenland and Antarctica ice sheets is equal to 0.78 mm/year for Greenland 

and 0.39 mm/year for Antarctica. 

In this regard, by accounting the loss of the whole volume of ice of the Greenland and 

Antarctica ice sheet, it is possible to estimate a SLE, respectively, of ~7 m and ~70 m. By 

considering the fact that the West Antarctica has a negative bedrock topography that, reasonably, 

would be occupied by the meltwater, the final estimation of SLE of Antarctic Ice Sheet is closer 

to 55-60 m. This estimation is the eustatic component of the sea level rise. 

Not only eustatic and steric expansion are influencing the changes of sea level around the 

world. A third component, related to the gravitational field of the Earth, is responsible for the 

spatial distribution of the sea level changes. In fact, as the ice sheets are losing mass, not only this 

ice mass is becoming a positive component in the ocean mass balance, but also it is subtracted to 

the whole ice sheet mass. The ice sheet mass exerts a gravitational (tidal) attraction on the 

surrounding ocean, which leads to a build-up of water close to the ice mass. Melting of a part of 

the ice sheet translates to a reduction of the total tidal attraction exerted on the closest mass of 

ocean. This process leads to an actual decrement of the sea level in the nearest part of the ice 

sheet, accentuated by the isostatic adjustment process (assumption of elastic deformation of the 

ground below the ice sheet leading to an uplift after the removal of the weight of the ice), and to 

a further positive contribution to areas of the ocean far from the ice sheet. This process is 

schematized in Figure (Gomez et al., 2010). 

 

 

Figure 8: Schematic representation of gravitational effect of ice mass loss to sea level rise (Gomez et al., 2010). 

 

Hence, the predictions of sea level rise contribution of ice sheet melting can take into 

account more and more details and additional processes, building models from the simplest 
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(eustatic contribution, a simple mass balance) to more complex models (accounting for shoreline, 

rotational feedback, Earth elasticity). A detailed description and evaluation of robustness of SLR 

estimation can be found in Mitrovica et al. (2011). According to this approach, sea level rise 

prediction to a certain location can be addressed not only to the melting amount and rate but also 

to the original location of the ice mass lost. 

Since ice melting and increased freshwater runoff can dramatically affect European 

climate (Khromova, 2010), the understanding and monitoring of the processes driving ice melting 

are crucial to estimate the ice storage and make previsions useful to manage water resources. The 

GLIMS project (Kargel et al., 2014) works in this regard, monitoring land ice from space and 

providing an assessment and methodology of the current studies on glaciated areas. 
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Remote sensing is the ensemble of techniques that allows the collection of information 

about an object or a phenomena without physical contact with the object (Tedesco, 2015). The 

collection of information is performed by sensing and recording reflected or emitted energy from 

the earth surface. Sensors can be airborne, spaceborne or in situ and are based on the record of 

the electromagnetic radiation emitted by the earth surface. Sensors differentiate by the band of 

the electromagnetic spectrum they can detect and from different sensors, by means of different 

techniques, it is possible to have qualitative and quantitative information about the earth surface 

in space and time. 

In this chapter fundamentals of electromagnetic radiation are presented, focusing on 

electromagnetic properties of snow and ice, in particular in microwave region. Then a summary 

of active and passive remote sensing instruments characteristics and finally passive microwave 

snowmelt detection techniques will be discussed.  

 

 

 

Remote sensing is based on the record of the energy emitted or reflected by the earth 

surface in the form of electromagnetic radiation, mathematically described through the wave 

propagation theory of classical electrodynamics. Starting from source-free (total charge Q=0 and 

current density I=0) Maxwell’s system of first order differential equations it is possible to derive 

wave propagation equations. 

 

Gauss law for electric field   ∇ ∙  𝑬 = 0,        (5) 

Gauss law for magnetic field ∇ ∙  𝑩 = 0,        (6) 

Faraday’s law    ∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
,       (7) 

Ampere’s law    ∇ × 𝑩 = 𝜇𝜖
𝜕𝑬

𝜕𝑡
, ,       (8) 
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By applying the curl to the Faraday’s law and recalling Ampere’s law and Gauss law for 

electric field, it is possible to obtain  

∇2𝑬 = 𝜇𝜖
𝜕2𝑬

𝜕𝑡2 ,            (9) 

which relates spatial and temporal second order derivative of the electric field and is called wave 

equation. Similarly, it is possible to obtain the wave equation for the magnetic field.  

∇2𝑩 = 𝜇𝜖
𝜕2𝑩

𝜕𝑡2 ,          (10) 

It is possible to prove that by considering an electromagnetic wave propagating in e3 

direction the electric field can have components only in e1 and e2 directions, perpendicular to e3. 

In the same way, magnetic field can have components such that E, B and e3 are perpendicular 

each other. Thus, according to wave theory, both electric and magnetic fields propagate 

orthogonally to wave propagation direction with the same velocity c, related also to two other 

fundamental properties of waves: wavelength λ and frequency ν, and 𝜇𝜖 = 𝑐−2.  

 

 

Figure 9: Schematic representation of electromagnetic wave. 

 

𝑐 = λν,            (11) 

It is called polarization the direction of the electric field with respect to the earth surface: 

if the electric field is parallel to the earth surface the polarization is horizontal, if it is 

perpendicular to the earth surface the polarization is vertical.  

It can be noticed that the propagation of the electromagnetic radiation is related to two 

different physical properties of the media: permeability and permittivity. The electromagnetic 

permittivity 𝜖 is represented by a real and an imaginary part 

𝜖 = 𝑅𝑒(𝜖) + 𝐼𝑚(𝜖)𝑖,          (12) 

where the real part represents the scattering while the imaginary one the absorption.  
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 Electromagnetic radiation is emitted by any object having absolute temperature higher 

than 0 K. The power radiated by a blackbody is related to the thermodynamic temperature through 

the Stefan-Boltzmann’s law, considering all the wavelengths, while the spectral density of the 

radiation is described by Planck’s law, either in wavelength and frequency forms. The peak 

emission of the blackbody at a given temperature is related to the wavelength (or frequency) 

through Wien displacement law. Planck law, in frequency formulation, can be expressed as 

𝐵(𝑣, 𝑇) =
8𝜋𝑣2

𝑐3

ℎ𝑣

𝑒

ℎ𝑣
𝑘𝑏𝑇−1

,          (13) 

 

Figure 10: Intensity of blackbody radiation in function of the wavelength according to Plank’s law at different 

temperatures. The higher the temperature the higher the emitted radiation. The peak is shifted to lower 

wavelengths as the temperature increases. 

 

In microwave region (long wavelength, low frequency, [300MHz,300GHz]) the term hv<<kbT 

make possible to expand the term at the denominator according to the Taylor expansion 

𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+ ⋯,          (14) 

Leading to the expression 

𝐵(𝑣, 𝑇) = 𝑘𝑏𝑇
8𝜋𝑣2

𝑐3 ,  

Representing the radiation of a blackbody at low frequency: the Rayleigh-Jeans approximation. 

The brightness temperature is defined as the temperature of a blackbody having the same 

brightness of the considered surface. The brightness temperature is dependent only by the 

physical temperature of the emitting surface and by the electromagnetic permittivity which are 

frequency and polarization dependent; only in the case of blackbody the brightness temperature 
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is the same for all frequencies. The expression of the brightness temperature according to the 

Rayleigh-Jeans approximation is 

𝑇𝑏 = 𝜀𝑇,            (15) 

 

In the following parts of this chapter we discuss the permittivity characteristics of the parts of 

the cryosphere of our interest for the purposes of this work. 

 

 

 

Microwave emission properties of glaciers and ice sheets are substantially dependent on 

ice and snow properties. During the winter season the emission is driven either by the interaction 

of snow and ice layer (low frequencies) or mostly by the snow cover (higher frequencies). On the 

other end the summer season is characterized by wet snow covering the glacier or melting ice. In 

both cases, the presence of liquid water leads to a significant increment of the imaginary part of 

permittivity. 

 

 
 

Pure ice dielectric permittivity, in microwave region, does not depend on frequency and 

weak depend on temperature for the real part while depends on both of them for the imaginary 

part. The weak dependence on temperature is the basis of the relations proposed to model the real 

part of the dielectric constant (here the example of Matzler and Wegmuller, 1987): 

 

𝑅𝑒(𝜀𝑖𝑐𝑒) = 3.1884 + 9.1 ∙ 10−4(𝑇 − 273) ,       (16) 

The imaginary part presents in microwave region dependency on temperature and 

frequency as 

𝐼𝑚(𝜀𝑖𝑐𝑒) =
𝐴(𝑇)

𝑓
+ 𝐵(𝑇)𝑓,          (17) 

where f is the frequency and A and B are coefficients dependent on temperature and relation have 

been proposed based on data fitting (here for example Stogryn, 1986) 

𝐴(𝑇) =
𝑒

[12.5 − 
3.77∙103

𝑇
]

𝑇
,          (18) 
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𝐵(𝑇) = 10−4𝑅𝑒(𝜀𝑖𝑐𝑒) ∙ (273.41 − 𝑇)−0.5,       (19) 

 

These relations from literature are referred to pure ice. In reality, in ice impurities are 

generally present and play a significant role in the changes of the permittivity. As impurities can 

have different origins: debris coming from the bed of the glacier, dust, carbon or presence of ice 

algae (Wang et al., 2018).  

 

 
 

Snow is considered as a complex medium, consisting in different parts. A layer of snow 

can be classified as dry or wet. Dry snow is a medium composed by ice crystals in an air 

background while wet snow is a mixture of ice particles, water droplets and air. The scattering 

properties of the layer are dominated by the ice particles (Ulaby et al., 1986).  

According to the emission characteristics, different types of snow have been classified 

according to the following scheme (Schanda et al, 1983): 

1) Winter snow: dry snow that has not undergone melting metamorphism, generally 

found at high altitude areas in winter period (November-March for Northern 

Hemisphere, March-November for Southern Hemisphere); 

2) Wet spring snow: snowpack composed by a thick layer of wet, quasi-spherical ice 

crystals formed day-time at T above freezing point; 

3) Dry spring snow: snowpack consisting of a layer of refrozen snow formed during cold 

nights. 

The following figure (from Ulaby et al. 1986, from the study of Schenda et al. 1983) shows 

the spectra in microwave region of the mentioned typologies of snow. At 37 GHz, it is possible 

to notice that the difference between winter dry snow and refrozen spring snow is around 30 K.  

 



30 

 

 

Figure 11: Emission behavior of wet spring snow, winter snow and refrozen spring snow at different frequencies 

in microwave region. 

 

The microstructure of snow with presence of liquid water can be divided in pendular and 

funicular regime. The former, characterized by low wetness, presents water bubbles divided by a 

continuous air background through the ice crystals; the latter, characterized by high wetness, 

presents a continuous liquid phase. 

Hence, dry and wet snow electromagnetic properties are fundamental to understand the 

emission behavior of the surface sensed by passive microwave sensors. As previously said, dry 

snow from an electromagnetic point of view is a medium composed by ice and air. The 

electromagnetic permittivity is thus a function of the physical properties of the components of the 

snowpack. The real part is considered constant with respect to frequency and temperature and 

function of fractional volume only. Empirical relationships have been proposed in literature to 

define both real and imaginary part as function of snow density (Mätzler,1987; Sihvola, 1999) 

as: 

𝑅𝑒(𝜀𝑑𝑟𝑦𝑠𝑛𝑜𝑤) = 𝑎 + 𝑏𝜌𝑑𝑟𝑦𝑠𝑛𝑜𝑤,         (20) 

𝑅𝑒(𝜀𝑑𝑟𝑦𝑠𝑛𝑜𝑤) =
1+𝛼𝜌𝑑𝑟𝑦𝑠𝑛𝑜𝑤

1−𝛽𝜌𝑑𝑟𝑦𝑠𝑛𝑜𝑤
,         (21) 

𝐼𝑚(𝜀𝑑𝑟𝑦𝑠𝑛𝑜𝑤) = 𝐼𝑚(𝜀𝑖𝑐𝑒) ∙ 𝐹(𝜌𝑑𝑟𝑦𝑠𝑛𝑜𝑤),        (22) 

For what concerns wet snow, it can be seen as a medium composed by ice, air and liquid 

water: dry snow with the appearance of liquid water content. The general expression for wet snow 

permittivity is 

𝜀𝑤𝑒𝑡𝑠𝑛𝑜𝑤 = 𝜀𝑑𝑟𝑦𝑠𝑛𝑜𝑤 + ∆𝜀,          (23) 
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where Δε is generally expressed as polynomial function of the wetness. Generally speaking, the 

presence of liquid water has a major effect on the imaginary part of the electromagnetic 

permittivity, the absorption term leading to an increment of the emission. 

 

Figure 12: Schematic representation of emission behavior of snow in dry and wet conditions. 

 

 

 

 

 

Since microwave sensors can detect directly the change in electromagnetic properties of 

snow passing from dry to wet conditions, many remote sensing techniques have been developed 

and applied to detect melt events. Unlike other sensors, passive microwave (PMW) sensors are 

not sensitive to weather conditions and clouds. Moreover, since the PMW sensors measure the 

energy naturally emitted by the surface they do not require solar illumination. These two charac-

teristics allow to detect and map melting at high temporal resolution. The first satellite with the 

Scanning Microwave Multichannel Radiometer (SMMR) has been launched in 1979, it has been 

followed by the Special Sensor Microwave/Imager (SSM/I, from 1987) and the Special Sensor 

Microwave Imager/Sounder (SSMI/S, from 2006) flying on Defense Meteorological Program 

Satellites (DMSP) and the Advanced Microwave Scanning Radiometer- EOS (ASMR-E) flying 

on the NASA AQUA satellite (2002- to date). Thus, PMW data are also characterized by a tem-

poral coverage longer than 30 years. A long time series of data is necessary to evaluate changes 

in hydrological and climate systems, hence PMW represent an irreplaceable tool. 

Spaceborne PMW sensors can measure the radiation emitted at different frequency of the 

microwave part of the electromagnetic spectrum. (mostly K and Ka bands). Different frequencies 
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are characterized by different penetration length which means that every channel is representative 

of a certain depth at which the energy is emitted. This characteristic allows to detect sub-surface 

melting even when surface snow is frozen because of near-surface temperature is below zero but 

below the frozen layer snow is experiencing melting because of radiative forcing. 

Spatially, PMW sensors can cover a larger area if compared with optical/thermal system 

due to a larger Ground Instantaneous Field of View (GIFOV) on the order of tens of kilometers. 

The large swath combined with the multiple passages of the satellites above the polar regions 

make PMW sensors extremely suitable for large scale studies. The large spatial and temporal 

coverage and the high temporal resolution were counterbalanced by a slightly low spatial resolu-

tion.  

Passive microwave data have been widely adopted in melt detection studies [Macelloni et 

al. (2005), Pampaloni et al. (2004)] and different remote sensing techniques have been proposed. 

These techniques to detect snowmelt events by means of PMW data are based on the detection 

of the sudden increase of the signal of brightness temperature coming from the presence of liquid 

water in the snowpack. Brightness temperature is the measurement of the emission of the earth 

surface in microwave spectrum. In these bands, since the frequency of the electromagnetic radi-

ation is small enough, Plank law can be approximated with Rayleigh-Jeans law (Equation 24) 

that linearly relates the electromagnetic emission (Tb) to the physical temperature of the surface 

(T) through a scalar parameter called emissivity (ε), inversely proportional to the electromagnetic 

permittivity. 

 𝑇𝑏 = 𝜀𝑇,            (24) 

Thus, the variability of brightness temperature is governed by the physical temperature 

and the electromagnetic properties of the media. Considering that in polar region it is unlikely to 

have very high gradients of temperature at daily timescale and that during melting events snow 

temperature ranges around 273.15 K, the sudden increase of brightness temperature is related to 

the sudden increase of emissivity. In fact, the presence of liquid water in the snow pack, contrib-

uting to the imaginary part of the electromagnetic permittivity (absorption), produces an incre-

ment in emissivity of several orders of magnitude with respect to the dry snow condition, domi-

nated by the real part of the permittivity (scattering), according to frequency and polarization 

(Ulaby et al., 1986). Hence, by looking at the abrupt increment in Tb time series, it is possible to 

detect liquid water content in the snowpack (Macelloni et al., 2001), distinguishing between dry 

and wet pixels (Fig. 13) and consequently map melting areas. 
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Figure 13: Brightness temperature of dry and wet pixels over Greenland ice sheet sensed by 37 GHz passive 

microwave radiometer, horizontal polarization. 

 

 

 

According to the emission properties described, several snowmelt detection algorithms have been 

developed and proposed in literature. A first classification can be done distinguishing in thresh-

old-based (T-B) and edge-detection (E-D) algorithms. Another distinction can be done between 

single-channel (S-C) and multi-channel approaches (M-C). Threshold based algorithms detect 

melting days when a defined threshold is exceeded while edge-detection algorithms look for the 

sudden change of the Tb signal. For what concerns T-B algorithms, Steffen et al. (1993) used the 

normalized gradient ratio GR=(Tb19H -Tb37H)/( Tb37H +Tb19H) to detect wet pixels fixing a threshold 

based on in situ measurements. This method has been improved by Abdalati and Steffen (1995) 

introducing the cross-polarized gradient ratio XPGR=( Tb19H -Tb37V)/( Tb37H +Tb19V), changing the 

Ka-band component of the algorithm from horizontally to vertically polarized. These techniques 

both use a M-C approach. Other methods based on S-C approach have been proposed, using fixed 

and space-time variable thresholds. A fixed threshold equal to 245 K, derived from the outputs 

of electromagnetic model and defined as the threshold above which there is no significant incre-

ment in Tb after a further increase in LWC (Tedesco et al., 2007). Aschraft and Long (2006) 

proposed a threshold based on dry (winter) and wet snow Tb as Tc= αTwinter+(1-α) Twet where Twinter 
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is the average of winter temperature and Twet fixed as 273 K. The mixing coefficient α=0.47 was 

derived considering LWC=1% in the first 4.7 cm of snowpack. Other studies have been done 

using a threshold value based again on the winter mean temperature plus an increment coming 

from the presence of LWC.  

𝑇𝑐 = 𝑇𝑤𝑖𝑛𝑡𝑒𝑟 + ∆𝑇,           (25) 

Torinesi et al. (2003) proposed a value of ΔT=Nσ with Twinter and σ that vary in space and time 

but fixed N=3 derived by comparison with weather station temperature data. Similarly, Zwally 

and Fiegles (1994) used ΔT=30 K. In this work we tried to increase this value in order to perform 

a sensitivity analysis to 35 K and 40 K. Tedesco (2009) proposed another approach based on 

Microwave Emission Model of Layered Snowpack (MEMLS) outputs. The model simulated, 

varying the input parameters (as density and temperature) and fixing others (frequency, polariza-

tion and LWC), the brightness temperature at two different values of LWC considering a surface 

layer of 0.05 m. From MEMLS the increment above the winter mean is also linearly dependent 

to the winter mean as follows 

∆𝑇 = 𝜑𝑇𝑤𝑖𝑛𝑡𝑒𝑟 + 𝜔,           (26) 

Values of the coefficients (φ, ω) have been computed as (-0.2, 58 K) in case of LWC=0.1% and 

(-0.52, 128 K) in case of LWC=0.2%. Inserting this expression of the ΔT into Eq. (25), Tc can be 

written as 

𝑇𝑐 = 𝑇𝑤𝑖𝑛𝑡𝑒𝑟 + 𝜑𝑇𝑤𝑖𝑛𝑡𝑒𝑟 + 𝜔 = (1 + 𝜑)𝑇𝑤𝑖𝑛𝑡𝑒𝑟 + 𝜔 = 𝛾𝑇𝑤𝑖𝑛𝑡𝑒𝑟 + 𝜔,   (27) 

where (γ, ω) assume the values (0.8, 58 K) in case of LWC=0.1% and (0.48, 128 K) in case of 

LWC=0.2%. According to the results showed by Tedesco (2009), in this work we apply and study 

on the enhanced resolution dataset the coefficients related to the presence of LWC=0.2% only.  

Differently, a technique based on the diurnal amplitude variation (DAV) have been pro-

posed by Ramage and Isacks (2002) to detect melt in Alaska considering a fixed threshold value 

on both 37 GHz brightness temperature (246 K) and DAV (DAVc=10 K). Tedesco (2007) im-

proved this technique considering not only the Ka-band channel but also the 19 GHz brightness 

temperature to detect melting on Greenland ice sheet, passing from a S-C to a M-C technique. A 

further improvement of this technique has been proposed by Tedesco et al. (2009) with the D-

DAV approach. If in the previous studies the thresholds Tc and DAVc were spatially fixed, in D-

DAV the threshold DAVc is computed as DAVjan,feb +10 K while Tc comes from the modelling of 

a bimodal PDF as B(m1,s1,m2,s2,p)=pG(m1,s1)+(1-p)G(m2,s2) where p is the percentage of dry 

pixels and mi and si are respectively the mean and the standard deviation of the two parts of the 
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curve. The threshold is expected to be between the two means. With this method both thresholds 

are dynamically computed in space.  

On the other hand, E-D approaches are based on signal processing techniques with the aim 

of detecting the sudden change of the PMW record signals. Liu et al. (2005) proposed the use of 

the wavelet transform evaluating the optimal edge threshold value by minimizing the probability 

of erroneous pixel classification from the parameters of a bimodal distribution. This method has 

been improved by applying a neighborhood operation, correcting possible errors in detecting melt 

onset date by looking at the closest pixels. Joshi et al. (2001) adopted a filter based on the deriv-

ative of Gaussian to analyze trends of melt duration over Greenland. Steiner and Tedesco (2014) 

adopted a wavelet-based algorithm applied to scatterometer data to detect melt over Antarctica.  
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We use spaceborne passive microwave enhanced resolution horizontally polarized 

brightness temperatures generated within the framework of a NASA MeASUREs project 

[https://earthdata.nasa.gov/community/community-data-system-programs/measures-projects] 

and distributed by NSIDC in the Equal-Area Scalable Earth Grid (EASE 2.0) projection at a 

spatial resolution ranging from 25 km to 3.125 km, depending on the frequency. In this work we 

use data over both the Northern and Southern Hemispheres to study the potential of this dataset 

to be applied over both the Greenland and Antarctica ice sheets for melt detection and mapping. 

Specifically, we use the Ka band (37 GHz), horizontal polarization in view of its sensitivity to 

the presence of liquid water within the snowpack (Ulaby et al., 1986) and because of the relatively 

high spatial resolution (3.125 km) at which this dataset is produced. The dataset produced by 

Brodzik et al. (2018) consists in both low resolution, characterized by low noise, and high 

resolution data, supposed to be more noise affected, and is produced with two different swath.to-

grid algorithms. The coarse resolution dataset is based on a drop in a box algorithm that averages 

every swath measure falling in the considered pixel and is the same algorithm used to produce 

precedent gridded data. The enhanced resolution dataset is the result of a radiometer version of 

Scatterometer Image Reconstruction (rSIR) technique that transforms swath data to gridded 

format that derives the Tb value from all the overlapping measurements, weighted y antenna gain. 

/]. The approach used to generate the enhanced resolution product addresses also another issue in 

the historical PMW dataset, consisting in the need for meeting the requirements of modern Earth 

system Data Records or Climate Data Records (CDRs), most notably in the areas of inter-sensor 

calibration and consistent processing methods. Overall, the historical gridding techniques for 

these passive microwave sensors (Armstrong et al., 1994, updated yearly; Knowles et al., 2000; 

Knowles et al., 2006) were relatively primitive and were produced on grids (Brodzik and 

Knowles, 2002; Brodzik et al., 2012) that are not easily accommodated in modern software 
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packages. In the reconstruction algorithm used for the enhanced Tbs, the so-called effective 

measurement response function (MRF), determined by the antenna gain pattern and being unique 

for each sensor and sensor channel, is used in conjunction with the scan geometry and the 

integration period. The technique uses the Backus-Gilbert technique (Backus and Gilbert, 1967; 

1968), a general method for inverting integral equations, which has been applied for solving 

sampled signal reconstruction problems (Caccin et al., 1992; Stogryn, 1978, Poe, 1990), for 

spatially interpolating and smoothing data to match the resolution between different channels 

(Robinson and Olson, 1992), and improving the spatial resolution of surface brightness 

temperature fields (Farrar and Smith, 1992; Long and Daum, 1998). More information about the 

product can be found at https://nsidc.org/data/nsidc-0630.  

Our time series starts in 1980, with data available from the SMMR sensor and ends in 

2016 for a total of 37 years. Data is provided twice a day, as morning and evening passes and the 

melt detection algorithms are applied to both datasets in order to capture melting that could be 

present in either or both passes. For our analysis, we use data collected by the SMMR-Nimbus 7, 

SSM/I-F08, SSMI/-F11, SSM/I-F13, SSMI/S-F17 because of the higher stability over the 

working period [http://www.remss.com/support/crossing-times/]. Two main problems in 

building a multisensor time series are the differences associated with the use of different sensors 

and associated degrading of performance as well as the difference in the availability of data from 

multiple datasets. In order, to address these issues we cross-calibrate the different sensors using 

concurrent acquisitions and interpolate the obtained brightness temperatures to obtain a 

continuous time series between 1980 and 2017 over both hemispheres (see Chapter 4). 

An example of enhanced PMW data collected over Greenland on July, 2008 is reported in 

Figures 14 and 16, showing the enhanced spatial detail that the new product can capture with 

respect to the one previously used at 25 km. As can be noticed from map, the spatial distribution 

of Tb at large scale can be well captured by both coarse and enhanced resolution products. A 

considerable improvement in defining spatial patterns can be noticed by looking closer to the 

selected validation site. The enhanced resolution not only shows more precisely the spatial 

variability of brightness temperature, but also provides a better representation of the ice sheet 

edges, reducing the problem of mixed ice-land-ocean pixels. In Figure 15 is reported an example 

of the timeseries at Swiss Camp at coarse and enhanced resolution and reporting two of the 

threshold values studied in this paper. It can be noticed that the two timeseries appears to be 

similar and sensitive to the presence of liquid water. However, in some days melt is not detected 

https://nsidc.org/data/nsidc-0630
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in both timeseries, showing the different spatial sensitivity of the enhanced resolution gridded 

data we assume to represent better melting events in each location. 

 

Figure 14: Passive microwave brightness temperature image over Greenland ice sheet at 25km and 3.125km spatial 

resolution. Below a detail of the area surrounding Swiss Camp. 

 

 

Figure 15: Time series of brightness temperature (37 GHz, horizontal polarization) over Greenland ice sheet at 

25km and 3.125km spatial resolution. 
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Figure 16: Passive microwave brightness temperature image over Antarctica ice sheet at 25km and 3.125km spatial 

resolution. At top a detail over Antarctic Peninsula, at bottom the Amery ice shelf. 

 

 

 
 

The long temporal coverage that characterizes passive microwave remote sensing data is 

guaranteed by different sensors placed on different satellites, each covering a certain temporal 

window. Thus, in order to create a continuous time series from 1979 to 2018 it is necessary to 

merge data from different sensors that present biases in the measurement of brightness 

temperature due to differences in characteristics of sensors themselves, such as IFOV, swath 

width, view angle, altitude and Local-Time-Of-Day. Several relations have been proposed to 

perform cross calibration of EASE Grid data. Jezek et al. (1991) compared SMMR and SSM/I 

over the Antarctic ice sheet for K and Ka bands (19GHz and 37GHz) for both horizontal and 
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vertical polarizations while Steffen et al. (1993) over Greenland for 18GHz and19GHz. Abdalati 

et al. (1995) derived relations between SSM/I observations for platforms F08 and F11 over 

Antarctica and Greenland for 19GHz, 22GHz and 37GHz. Dai et al. (2015) intercalibrated 

SMMR, SSM/I (F08 and F13) and SSMI/S (F17) over snow covered pixels in China and (2010) 

SMMR, SSM/I and AMSR-E over the whole earth surfaces selecting hot and cold pixels. 

Cavalieri et al. (2012) performed inter-sensor calibration comparing SSM/I-F13 and SSMI/S-F17 

data for Global sea ice. Stroeve et al. (1998) found the relations between brightness temperature 

from different sensors to be sensitive to the sampled region for the study. The purpose of this part 

of the work is to compare enhanced spatial resolution EASE-2.0 brightness temperature data from 

NASA MEaSUREs project for both Antarctica and Greenland, check the goodness of 

intercalibration and find relations to be applied in constructing multi-platform time series. 

 

 

The general approach to deal with intercalibration between two sensors is to perform a 

linear regression in order to find slope (m) and intercept (q) of the straight line that best fits the 

scatter plots of brightness temperature data obtained from two different satellites (Equation 27). 

𝑦 = 𝑚𝑥 + 𝑞,            (27) 

 

In computing m and q one of the two variables (x) is considered as the independent variable 

and the other one (y) as the variable dependent on x. Linear regression analysis can be performed 

both temporally (pixel by pixel, over the whole overlap period) and spatially (day by day, over 

the whole map). In this work the latter approach has been followed, accordingly with the study 

of Jezek et al. (1993) in which studied SMMR and SSM/I-F08 data over Antarctic ice sheet.  

Since correlation coefficients of each regression exceeded 0.99, they obtained slope and 

intercept values for each day of overlap and then averaged them to establish a general relation for 

the whole Antarctic ice sheet. In this work two approaches have been used to obtain m and q.  

The first method consists in computing the weighted average between the daily slope and 

intercept values. Considering n days, for every i-th day mi, qi and R2
i have been computed and 

then averaged according to Equations 2 and Equation 3. 

𝑚 =
∑ 𝑚𝑖𝑅𝑖

2𝑛
𝑖=1

∑ 𝑅𝑖
2𝑛

𝑖=1
,           (28) 

𝑞 =
∑ 𝑞𝑖𝑅𝑖

2𝑛
𝑖=1

∑ 𝑅𝑖
2𝑛

𝑖=1
,            (29) 



41 

 

 

This choice has been done to assign higher significance to results obtained from pairs of 

data with higher correlation, assumed as the less noise-affected. The second method consists in 

considering as variables x and y for the linear regression not only all the brightness temperature 

values in common between maps from two satellites for one day but rather all common values 

for all common days and then evaluate m and q with a unique linear regression. 

Once m and q have been computed a linear relation between two different sensors is 

available to be applied. In order to test the improvements obtained from the calibrations, 

histograms have been plotted and compared qualitatively and quantitatively by computing the 

distance between the two histograms before and after the calibration. 

𝐷𝑖 = |ℎ𝑖(𝑇𝑏
𝐴)  − ℎ𝑖(𝑇𝑏

𝐵)|,          (30) 

where Di is the difference between the two histograms A and B for the i-th value of brightness 

temperature. To evaluate the global difference of the two compared histograms the area under the 

distance curve as 

𝐷 = ∑ 𝐷𝑖𝑖 ,                      (31) 

 

𝑑 =
𝐷𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙−𝐷𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

𝐷𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
,                    (32) 

 

With D it is possible to evaluate the distance reduction percentage (d) for the ranges of 

brightness temperature after the application of the proposed relations, used as indicator of 

improvement. 

 

 

First of all, in order to focus the study over Greenland and Antarctica only, a Land-Ocean-

Coastline-Ice (LOCI) mask (Figure 17) provided by Boston University has been applied keeping 

the only pixels identified as Ice (Index=101). 
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Figure 17: Land-Ocean-Coastline-Ice (LOCI) mask adopted. To the ice areas is assigned the value 101. 

 

 

Figure 18: Representation of the stability over the working period of the spaceborne passive microwave satellites. 

The red circles identify the selected instruments. 

 

The platforms selected for this work are SMMR-Nimbus 7, SSM/I-F08, SSMI/-F11, 

SSM/I-F13, SSMI/S-F17 because of the higher stability over the working period for what 

concerns the local time of ascending node (Figure 18). The channel that has been analyzed is 37 

GHz channel, horizontal polarization due to its high sensitivity to liquid water content.  

The overlap periods selected for this study are: 
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(1) 07/09/1987-08/20/1987 for a total of 22 common days (one every two days) for SMMR 

and SSM/I-F08;  

(2) 12/03/1991-12/18/1991 for a total of 16 common days for SSM/I-F08 and SSM/I-F11 as 

it is the most consistent overlap period [Abdalati et al. (1995) took 12/08/1991-

12/18/1991]; 

(3) 05/03/1995-09/30/1995 for a total of 76 common days (one every two days except the 

missing days to reduce the number of data in the computation) for SSM/I-F11 and SSM/I-

F13; 

(4) 03/01/2008-12/10/2008 for a total of 71 common days (one every four days except the 

missing days to reduce the number of data in the computation) for SSM/I-F13 and 

SSMI/S-F17;  

The short overlap periods for the first two couples of satellites is a limitation for this type 

of works. In fact, the overlap of the first couple is located temporally between July and August. 

This window coincides to summer for the northern hemisphere and winter for the southern 

hemisphere. Hence, there is a different climatic condition resulting in strong differences in 

brightness temperature values in Greenland and Antarctica. If in these months Antarctic winter 

lead to low values of brightness temperature, Greenland is characterized by presence of melting 

area, recognizable with higher Tb values. Thus, the comparison between the first two couple of 

satellites will be according to low and high values for Greenland and low values only for 

Antarctica, and vice versa for the second overlap period. For the last two couples the selected 

overlap period covers a larger window, leading to a more equal type of calibration for both 

Greenland and Antarctica. The reduction of number of days for the last two couples of satellites 

has been done to reduce the computational effort. 

Firstly, following Jezek et al. (1993), the absolute value of the difference between 

brightness temperature maps of the same day of overlap period have been computed as first 

comparison and qualitative evaluation of the magnitude of the bias between satellites. It appears 

that the greatest difference is between the first two compared products. In fact, 1987 is the overlap 

year between two different sensor’s generations: SMMR and SSM/I. The other couples of 

products compared in this work come from different satellites but sensor type is the same. As an 

example, here are plotted differences of Tb for the same day of the year 07/13/1987 and 

07/13/1995 for the couples SMMR\SSM/I-F08 and SSM/I-F11\ SSM/I-F13 for both Greenland 

and Antarctica. 
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Figure 19: Absolute value of the difference between brightness temperature sensed by SMMR and SSM/I-F08 

during the same day of acquisition.   

 

Accordingly, in Antarctica it is possible to recognize a generally higher difference in 

brightness temperature between SMMR and SSM/I, homogeneously distributed all over the 

common area sensed by the two sensors of the day considered. Spatial patterns are evident from 

the presented difference map and have been found also by Jezek et al. (1993) regarding 25 km 

resolution study.  

Maximum, minimum and average values of the difference between pairs of data have been 

computed and reported in the Table 2. Maximum and minimum differences take large absolute 

values for every couple of satellite, probably because of the noise of the signal, with a peak for 

SMMR and SSM/I-F08 evening pass over Greenland possibly for the larger difference in 

overpass time and the presence of melting in Northern Hemisphere. The average difference is 

close to 0 K for what concerns SSM/I and SSMI/S products, with the exception of F08-F11 

presenting an average difference slightly larger than 1 K, also found in Abdalati et al. (1995) for 

25 km resolution data, but ranges from -3.3914 K to -4.2847 K by comparing SMMR and SSM/I-

F08. 
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Antarctica 

 
 

Platforms Max Min Average 

SMMR-F08 Evening 85.89 -101.62 -4.2847 

SMMR-F08 Morning 85.35 -90.26 -3.3914 

F08-F11 Evening 63.78 -53.56 1.158 

F08-F11 Morning 72.86 -66.56 1.0713 

F11-F13 Evening 39.18 -66.13 -0.2112 

F11-F13 Morning 50.92 -49.77 -0.1253 

F13-F17 Evening 42.96 -54.98 0.0791 

F11-F17 Morning 46.6 -44.24 0.286 

 

 

Greenland 

 
 

Platforms Max Min Average 

SMMR-F08 Evening 442.33 -131.66 -3.8976 

SMMR-F08 Morning 48.93 -60.62 -3.9818 

F08-F11 Evening 60.68 -36.2 0.5596 

F08-F11 Morning 38.88 -41.55 0.384 

F11-F13 Evening 69.97 -59.34 -0.4874 

F11-F13 Morning 65.95 -55.31 -0.0824 

F13-F17 Evening 86.34 -69.91 0.1588 

F11-F17 Morning 74.68 -61.94 0.5176 

 

Table 2: Maximum, minimum and average difference between brightness temperature from overlapping 

platforms for Antarctica and Greenland. 

 

Linear regression has been performed as described in the previous section through the 

MATLAB Curve Fitting App. From the toolbox, a code has been generated and implemented as 

MATLAB function into the for loop running over the overlap days. The vectors imported in this 

code have been created by means of another MATLAB code that reshapes a daily brightness 

temperature map as column vectors, compares pixels removing from both maps all the pixels 

presenting NaN value. An example of the code used is presented below, for the case SSM/I-F13 

and SSMI/S-F17. Following the calculation of slope and intercept, the linear relations have been 

applied to the data in order to perform the calibration. In order to check the goodness of the 

calibration, histograms of brightness temperature have been computed and plotted. Qualitatively, 
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the purpose is to make the histograms of the pair of data fit. To perform a quantitative evaluation 

of the improvement, the percentage reduction of the integral of the distance function (d) has been 

computed. In the following code d is computed only once; it is necessary to run the code again 

(the second part only) changing the coefficients from method1 to method2 to obtain d for the 

other method. 

 

%% LINEAR REGRESSION ALGORITHM 

 

%% Computation of slope and intercepts with methods 1 and 2 

clear all 

% Choose Greenland or Antarctica folder 

addpath('E:\XCALI\greenlandF13-F17') 

dirListf13f17=dir(fullfile('E:\XCALI\greenlandF13-F17\*.mat')); 

fileListf13f17=char({dirListf13f17.name}); 

binranges=[100:1:300]; 

 

%Give a starting value for the overall vector- NaN will not be read by the 

%linear regression tool 

Tb2008F13E37Hlong=NaN; 

Tb2008F13M37Hlong=NaN; 

Tb2008F17E37Hlong=NaN; 

Tb2008F17M37Hlong=NaN; 

for i=1:size(fileListf13f17,1) 

if mod(i,2)~=0 

try 

filef13f17=strtrim(fileListf13f17(i,:)); 

load(filef13f17); 

% Method1 

% Fitting coefficients vector computation and compilation 

[fitresult, gof]=Fit(Tb2008F13M37Hvector,Tb2008F17M37Hvector); 

mq=coeffvalues(fitresult); 

mF13F17M(i)=mq(1); 

qF13F17M(i)=mq(2); 

rsquareF13F17M(i)=gof.rsquare; 

[fitresult, gof]=Fit(Tb2008F13E37Hvector,Tb2008F17E37Hvector); 

mq=coeffvalues(fitresult); 

mF13F17E(i)=mq(1); 

qF13F17E(i)=mq(2); 

rsquareF13F17E(i)=gof.rsquare; 

[fitresult, gof]=Fit(Tb2008F17M37Hvector,Tb2008F13M37Hvector); 

mq=coeffvalues(fitresult); 

mF17F13M(i)=mq(1); 

qF17F13M(i)=mq(2); 

rsquareF17F13M(i)=gof.rsquare; 

[fitresult, gof]=Fit(Tb2008F17E37Hvector,Tb2008F13E37Hvector); 

mq=coeffvalues(fitresult); 

mF17F13E(i)=mq(1); 

qF17F13E(i)=mq(2); 

rsquareF17F13E(i)=gof.rsquare; 

% Method2 

% create vectors for scatterplots for method 2 

Tb2008F13E37Hlong=[Tb2008F13E37Hlong; Tb2008F13E37Hvector]; 

Tb2008F13M37Hlong=[Tb2008F13M37Hlong; Tb2008F13M37Hvector]; 

Tb2008F17E37Hlong=[Tb2008F17E37Hlong; Tb2008F17E37Hvector]; 
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Tb2008F17M37Hlong=[Tb2008F17M37Hlong; Tb2008F17M37Hvector]; 

catch ME 

disp(i) 

end 

end 

end 

 

% Method 1 - Compute weighted average of slope and intercept 

mF13F17Mmethod1=sum(mF13F17M.*rsquareF13F17M)./sum(rsquareF13F17M); 

qF13F17Mmethod1=sum(qF13F17M.*rsquareF13F17M)./sum(rsquareF13F17M); 

mF13F17Emethod1=sum(mF13F17E.*rsquareF13F17E)./sum(rsquareF13F17E); 

qF13F17Emethod1=sum(qF13F17E.*rsquareF13F17E)./sum(rsquareF13F17E); 

mF17F13Mmethod1=sum(mF17F13M.*rsquareF17F13M)./sum(rsquareF17F13M); 

qF17F13Mmethod1=sum(qF17F13M.*rsquareF17F13M)./sum(rsquareF17F13M); 

mF17F13Emethod1=sum(mF17F13E.*rsquareF17F13E)./sum(rsquareF17F13E); 

qF17F13Emethod1=sum(qF17F13E.*rsquareF17F13E)./sum(rsquareF17F13E); 

 

% Method 2 - Remove one-NaN-days 

nanF17E=find(isnan(Tb2008F17E37Hlong)); 

nanF13E=find(isnan(Tb2008F13E37Hlong)); 

Tb2008F17E37Hlong(nanF13E)=NaN; 

Tb2008F13E37Hlong(nanF17E)=NaN; 

nanF17M=find(isnan(Tb2008F17M37Hlong)); 

nanF13M=find(isnan(Tb2008F13M37Hlong)); 

Tb2008F17M37Hlong(nanF13M)=NaN; 

Tb2008F13M37Hlong(nanF17M)=NaN; 

 

% Method 2 - Second fitting method 

[fitresult, gof]=Fit(Tb2008F13M37Hlong,Tb2008F17M37Hlong); 

mq=coeffvalues(fitresult); 

mF13F17Mmethod2=mq(1); 

qF13F17Mmethod2=mq(2); 

rsquareF13F17Mmethod2=gof.rsquare; 

[fitresult, gof]=Fit(Tb2008F13E37Hlong,Tb2008F17E37Hlong); 

mq=coeffvalues(fitresult); 

mF13F17Emethod2=mq(1); 

qF13F17Emethod2=mq(2); 

rsquareF13F17Emethod2=gof.rsquare; 

[fitresult, gof]=Fit(Tb2008F17M37Hlong,Tb2008F13M37Hlong); 

mq=coeffvalues(fitresult); 

mF17F13Mmethod2=mq(1); 

qF17F13Mmethod2=mq(2); 

rsquareF17F13Mmethod2=gof.rsquare; 

[fitresult, gof]=Fit(Tb2008F17E37Hlong,Tb2008F13E37Hlong); 

mq=coeffvalues(fitresult); 

mF17F13Emethod2=mq(1); 

qF17F13Emethod2=mq(2); 

rsquareF17F13Emethod2=gof.rsquare; 

 

 

%% Histograms 

 

% To apply relations found apply method1 or method2 at the linear relations 

% (just change the number) 

bincountsF13E=histc(Tb2008F13E37Hlong,binranges); 

bincountsF17E=histc(Tb2008F17E37Hlong,binranges); 

TbEF17c=mF13F17Emethod2.*Tb2008F13E37Hlong+qF13F17Emethod2; 

TbEF13c=mF17F13Emethod2.*Tb2008F17E37Hlong+qF17F13Emethod2; 
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bincountsF13Ec=histc(TbEF13c,binranges); 

bincountsF17Ec=histc(TbEF17c,binranges); 

bincountsF13M=histc(Tb2008F13M37Hlong,binranges); 

bincountsF17M=histc(Tb2008F17M37Hlong,binranges); 

TbMF17c=mF13F17Mmethod2.*Tb2008F13M37Hlong+qF13F17Mmethod2; 

TbMF13c=mF17F13Mmethod2.*Tb2008F17M37Hlong+qF17F13Mmethod2; 

bincountsF13Mc=histc(TbMF13c,binranges); 

bincountsF17Mc=histc(TbMF17c,binranges); 

 

% Distance function 

DistF17F13E=abs(bincountsF13E-bincountsF17E); 

DistF17F17CE=abs(bincountsF17E-bincountsF17Ec); 

DistF13F13CE=abs(bincountsF13E-bincountsF13Ec); 

DistF17F13M=abs(bincountsF13M-bincountsF17M); 

DistF17F17CM=abs(bincountsF17M-bincountsF17Mc); 

DistF13F13CM=abs(bincountsF13M-bincountsF13Mc); 

 

% Global distance reduction 

sumF17F13E=sum(DistF17F13E); 

sumF17F17CE=sum(DistF17F17CE); 

sumF13F13CE=sum(DistF13F13CE); 

sumF17F13M=sum(DistF17F13M); 

sumF17F17CM=sum(DistF17F17CM); 

sumF13F13CM=sum(DistF13F13CM); 

dF17F17CE=(sumF17F13E-sumF17F17CE)./sumF17F13E; 

dF13F13CE=(sumF17F13E-sumF13F13CE)./sumF17F13E; 

dF17F17CM=(sumF17F13M-sumF17F17CM)./sumF17F13M; 

dF13F13CM=(sumF17F13M-sumF13F13CM)./sumF17F13M; 

 

Code 1  

 

For SMMR-SSM/I linear regression, slopes and intercepts have been found different from 

unit for both Greenland and Antarctica. Moving to SSM/I and SSMI/S data slopes and intercepts 

assume values closer to unit. Coefficients of determination R2 for SMMR-F08 couple resulted 

larger for Antarctica than for Greenland but smaller with respect to the results obtained by Jezek 

et al. (1993) for 25 km resolution data. Since swath-to-grid algorithms are affected by higher 

noise at higher spatial resolution (Brodzik et al., 2018), the presence of lower values of 

coefficients of determination can be a consequence of this noisy characteristic of the signal. 

However, for SSM/I and SSMI/S comparison, R2 reaches generally higher values, overcoming 

0.99 for Antarctica F11-F13 comparison. According with Abdalati et al. (1995), larger 

coefficients of determination have been found in Greenland, confirming the higher stability of 

sensors in winter seasons due to the smaller diurnal temperature cycle and the absence of melting 

events. For SMMR-F08, histograms of brightness temperature of both Antarctica and Greenland 

appear to not perfectly fit (Figures 21 and 22) showing an evident distance. On the other hand, 
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SSM/I and SSMI/S data present good overlap of histograms for every couple of satellites, in 

accordance with the small values of average difference found.  

After the application of the linear relations found by regression, the corrected brightness 

temperature histograms have been compared with the original ones. Graphically the histograms 

of one of the two corrected brightness temperatures appear to better fit the other one in the case 

of the first two satellites (SMMR-SMMRC figure 21 and 22). Moreover, the computed values of 

distance reduction percentage d are positive for both methods 1 and 2, indicating an improvement 

of consistency. Differently, corrections of the other couples of platforms do not lead to significant 

improvements since original data were already well calibrated and presented average difference 

close to 0. Furthermore, in some cases negative values of d have been found indicating that the 

application of linear relation found in the way presented make the consistency worse. It is evident 

that the overlap between SMMR and SSM/I-F08 of 1987 shows higher differences and higher 

benefit coming from the correction we adopted. In the Figure 20 histogram of difference between 

TbSMMR and TbF08 are presented. It is possible to see that histograms follow a Gauss 

distribution with peak shifted closer to 0 after the correction (method 1). In appendix the results 

of the comparison of the other couples of satellites is reported. 

 

 

 

The comparison between the brightness temperature EASE 2.0 gridded data obtained from 

pairs of satellites in the overlapping periods showed a greater difference in the oldest pair, with 

values ranging from -3.3914 K to -4.2847 K. In the other pairs, formed by sensors of the same 

type, differences were found to be almost zero. 

By applying the linear relationships calculated by means of linear regression for the first 

pair of sensors it is possible to obtain an improvement in the consistency, reducing on average 

the bias between the data. This improvement is confirmed by the largest values of reduction of 

distance percentage d found for the couple SMMR and SSM/I-F08 and by the position centered 

mostly around zero of the histograms of the difference between the data after the calibration.  

In order to have the maximum improvement of the consistency of the time series it is 

necessary to choose a reference data set and correct all the other data to make them correspond 

to the fixed ones. We suggest considering as fixed reference the SSM/I-SSMI/S 1987-2018 time 

series since it is temporally longer than the SMMR coverage, it already presents good consistency 
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(as resulted from this analysis) and 1979-1987 data are collected every other day. Hence, a 

correction of SMMR leaves unmodified the longest and most consistent part of the time series. 

Coefficients can be found in the second part of the following tables (one for Greenland and one 

for Antarctica), referred as X=SMMR.  
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Figure 20: Histograms of difference between SMMR and SSM/I brightness temperature before (red) and after 

(blue) the application of the linear relations found.  
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Figure 21: Brightness temperature histograms before and after the application of the intercalibration relations, 

Antarctica. Relations are applied for both evening (a) and morning (b) passes, reporting the histograms of the data 

(top) and the distance between the histograms (bottom) for original data (left), applying the correction to SMMR 

data (center) and to the SSM/I data (right). 
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Figure 22: Brightness temperature histograms before and after the application of the intercalibration relations, 

Greenland. Relations are applied for both evening (a) and morning (b) passes, reporting the histograms of the data 

(top) and the distance between the histograms (bottom) for original data (left), applying the correction to SMMR 

data (center) and to the SSM/I data (right). 
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Figure 23: Scatter plots of SMMR and SSM/I-F08 brightness temperature data for overlap period over Antarctica 

(at the top) and Greenland (at the bottom) for evening (left) and morning (right) passes. Black lines show the linear 

fitting where dashed black line show the 1:1 line.  
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Antarctica 

X=F08 m1 m2 q1 q2 R2
2 d1 d2 

Morning 0.9108 0.9062 13.2273 14.0605 0.9115 0.7414 0.7686 

Evening 0.9368 0.9368 7.0417 7.0492 0.9796 0.3829 0.7728 
     

 
  

X=SMMR m1 m2 q1 q2 R2
2 d1 d2 

Morning 0.9991 1.0059 4.0517 2.8712 0.9115 0.6225 0.6633 

Evening 1.0455 1.0457 -3.7954 -3.8374 0.9796 0.8138 0.8168 

Greenland 

X=F08 m1 m2 q1 q2 R2
2 d1 d2 

Morning 0.818 0.821 32.3868 31.8562 0.8803 0.6865 0.4616 

Evening 0.8494 0.8419 26.0269 27.5114 0.8127 0.1204 0.3316 
     

 
  

X=SMMR m1 m2 q1 q2 R2
2 d1 d2 

Morning 1.0753 1.0722 -11.1399 -10.5807 0.8803 0.557 0.5157 

Evening 0.9635 0.9653 11.4237 11.1226 0.8127 0.0937 0.1227 

 

Table 3: Linear regression coefficients (m and q), coefficients of determination (R2) and difference function (d) 

for Greenland and Antarctica ice sheets.  Pedix 1 and 2 refers to the method adopted. 
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Once the calibration has been performed, a more consistent time series is available to be 

adopted. However, the different sensors collect data with different temporal resolution. In fact, if 

SSM/I and SSMI/S sensors collect data at a daily timescale, the SMMR sensor records data every 

other day. Moreover, there are some missing days of records due to satellite malfunctioning, 

leading to temporal gaps in the timeseries; the missing days are reported in the following table 

(https://nsidc.org/data/pm/smmr-ssmi-data-availability).  

 
 

EASE-Grid Projection 

1987 1987-08-25 to 1987-08-26, 1987-10-06 to 1987-10-07, 1987-12-03 to 1987-12-31 

1988 1988-01-01 to 1988-01-12, 1988-05-06 to 1988-05-09, 1988-09-23, 

1988-12-25 to 1988-12-27 

1989 1989-06-07, 1989-07-23 to 1989-07-24, 1989-10-23 

1990 1990-08-13, 1990-08-25 to 1990- 08-26, 1990-10-21 to 1990-10-22, 1990-10-26 to 1990-10-28, 1990-

12-22 to 1990-12-26 

1991 1991-12-27 (F8 only) 

1992 1992-06-18 

1993 1993-01-04 

1994 1994-07-20, 1994-11-20 to 1994-11-21 

1995 1995-05-21* 

1996 1996-12-01 

1998 1998-03-11 

2000 2000-12-01 

2001 No missing dates 

2002 No missing dates 

2003 No missing dates 

2004 No missing dates 

https://nsidc.org/data/pm/smmr-ssmi-data-availability
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2005 No missing dates 

2006 No missing dates 

2007 2007-01-22 to 2007-02-01, 2007-03-08 to 2007-03-12, 2007-07-10 to 2007-07-17 

2008 2008-03-19 to 2008-03-25, 2008-10-30 

2009 No missing dates 

2010 2010-06-28 

2011 No missing dates 

2012 2012-03-31 

2013 2013-11-26 to 2013-11-27 

2014 2014-01-07, 2014-11-07, 2014-12-19 

2015 2015-04-15, 2015-05-19, 2015-06-22, 2015-06-26, 2015-06-30, 2015-07-04, 2015-08-06, 2015-08-18 

to 2015-08-19, 2015-08-28, 2015-09-15, 2015-10-27, 2015-11-07 

2016 2016-04-05, 2016-05-04+, 2016-06-19, 2016-09-09, 2016-10-16, 

2016-12-28 

2017 2017-11-02 

2018 2018-01-20, 2018-06-26, 2018-07-05, 2018-09-17, 2018-10-02 

 

Table 4: List of missing brightness temperature data for every year.   

 

 

Figure 24: Example of spatially missing brightness temperature data of Northern Hemisphere around Greenland 

ice sheet.   
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In addition, a lot of NaN pixels are present, as shown in figure. This difference in data 

record between the different sensors and the presence of spatial and temporal missing values 

represent a limitation in the quantification of melting days for the period 1979-1987. In literature, 

different approaches have been adopted to fill the voids and create a complete dataset. Zwally 

and Fiegles (1994) double counted the day before the missing date. Torinesi et al. (2002) 

completed the voids by linear interpolation of the data. In this work we adopt this second 

methodology by applying an interpolation algorithm to the portion of interest of the global maps. 

Moreover, in order to be able to account for possible interpolation errors, the algorithm developed 

creates a cell array map containing the vectors indicating the days of the year corresponding to 

the interpolated values for every pixel. In this way every user of the interpolated product can 

identify real measurements and distinguish the estimated ones. In addition, since some melt 

detection algorithms discussed in Chapter 3 and selected for this work are based on the winter 

mean brightness temperature (dry snow conditions), this algorithm generate maps of winter 

average to be used afterwards to compute the threshold maps. The choice of cell arrays to contain 

the data has been done after considerations related to the use of CPU and memory in MATLAB 

of the developed algorithms in the processes of heavy map files. Since the limitation in this case 

is in the amount of memory used to load the files, we selected the cell array since it is the less 

memory consuming. To perform the interpolation, it has been necessary to merge consecutive 

years to avoid unstable value interpolated at the beginning and the end of the time series due to 

missing boundary values. In practice, to create the timeseries of the maps of the i-th year, the first 

30 days of the (i-1)-th and the last 30 days of  (i+1)-th year have been used to have for every year 

at least an initial and final value outside the range of the i-th year. 

The final result is a .mat file for each year containing two cell arrays representing the 

interpolated brightness temperature (morning and evening passes) with size 365*2 (or 366*2) 

containing on the left cell the number of the day and on the right cell the interpolated map matrix, 

two cell arrays with size 1200*1200 for Greenland (2000*1500 for Antarctica) containing in each 

cell a vector containing the days in which the value of brightness temperature has been computed 

by interpolation and two 1200*1200 for Greenland (2000*1500 for Antarctica) containing the 

winter average of brightness temperature, considered as the average of the Tb of January and 

February for Greenland (July and August for Antarctica). 
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Figure 25: Outputs of the interpolation algorithm.   

 

%% Interpolation Monoplatform 

%% 1994-F11 

  

clear all 

 

% Add folder path of year of interest and +1 -1 and Mask 

addpath('/home/pcolosio/outputs/InterpTb'); 

addpath('/data/mtedesco/Marco_37H/matfiles_37H'); 

  

%Create file list (NorthMorning,NorthEvening) 

%Files in the same folder on the server 

  

dirListNE=dir(fullfile('/data/mtedesco/Marco_37H/matfiles_37H/NSIDC-0630-

EASE2_N3.125km-F11_SSMI-1994*E-SIR-CSU-v1.3.mat')); 

fileListNE=char({dirListNE.name}); 

dirListNM=dir(fullfile('/data/mtedesco/Marco_37H/matfiles_37H/NSIDC-0630-

EASE2_N3.125km-F11_SSMI-1994*M-SIR-CSU-v1.3.mat')); 

fileListNM=char({dirListNM.name}); 

  

dirListNE_1=dir(fullfile('/data/mtedesco/Marco_37H/matfiles_37H/NSIDC-0630-

EASE2_N3.125km-F11_SSMI-1993*E-SIR-CSU-v1.3.mat')); 

fileListNE_1=char({dirListNE_1.name}); 

dirListNE1=dir(fullfile('/data/mtedesco/Marco_37H/matfiles_37H/NSIDC-0630-

EASE2_N3.125km-F11_SSMI-1995*E-SIR-CSU-v1.3.mat')); 

fileListNE1=char({dirListNE1.name}); 

  

dirListNM_1=dir(fullfile('/data/mtedesco/Marco_37H/matfiles_37H/NSIDC-0630-

EASE2_N3.125km-F11_SSMI-1993*M-SIR-CSU-v1.3.mat')); 

fileListNM_1=char({dirListNM_1.name}); 

dirListNM1=dir(fullfile('/data/mtedesco/Marco_37H/matfiles_37H/NSIDC-0630-

EASE2_N3.125km-F11_SSMI-1995*M-SIR-CSU-v1.3.mat')); 

fileListNM1=char({dirListNM1.name}); 

  

%Open binary Mask File (5760*5760) /home/pcolosio/Mask/EASE2_N3.125km.LO-

CImask_land50_coast0km.5760x5760.bin 

%Mask for North 

  

fidMaskN=fopen('/home/pcolosio/Mask/EASE2_N3.125km.LO-

CImask_land50_coast0km.5760x5760.bin','r'); 

MaskN=fread(fidMaskN,[5760 5760] ,'uint8'); 

fclose(fidMaskN); 

  

  

%Creation of Cell Arrays containing Tb map every day  
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for n=1:size(fileListNE,1) 

    try 

    fileNM=strtrim(fileListNM(n,:)); 

    load(fileNM); 

    TbNM(n,:)={n,TB(1901:3100,2601:3800)}; 

    catch 

    nan=NaN(1200,1200);     

    TbNM(n,:)={n,nan}; 

    end 

    try 

    fileNE=strtrim(fileListNE(n,:)); 

    load(fileNE); 

    TbNE(n,:)={n,TB(1901:3100,2601:3800)}; 

    catch 

    nan=NaN(1200,1200);     

    TbNE(n,:)={n,nan}; 

    end 

end 

  

%Creation of cell arrays of year +1/-1 

  

for p=1:20 

               try 

               fileNE1=strtrim(fileListNE1(p,:)); 

               load(fileNE1); 

               TbNE1(p,:)={p,TB(1901:3100,2601:3800)}; 

               catch 

               nan=NaN(1200,1200);     

               TbNE1(p,:)={p,nan}; 

               end 

                

               try 

               fileNM1=strtrim(fileListNM1(p,:)); 

               load(fileNM1); 

               TbNM1(p,:)={p,TB(1901:3100,2601:3800)}; 

               catch 

               nan=NaN(1200,1200);     

               TbNM1(p,:)={p,nan}; 

               end 

                

               try 

               fileNE_1=strtrim(fileListNE_1(size(fileListNE_1,1)-21+p,:)); 

               load(fileNE_1); 

               TbNE_1(p,:)={p,TB(1901:3100,2601:3800)}; 

               catch 

               nan=NaN(1200,1200);     

               TbNE_1(p,:)={p,nan}; 

               end 

                

               try 

               fileNM_1=strtrim(fileListNM_1(size(fileListNM_1,1)-21+p,:)); 

               load(fileNM_1); 

               TbNM_1(p,:)={p,TB(1901:3100,2601:3800)}; 

               catch 

               nan=NaN(1200,1200);     

               TbNM_1(p,:)={p,nan}; 

               end 
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end 

clear TB 

  

%Interpolation of time series on each pixel of interest 

%Indexes h and k are according to the dimensions of arrays contained in 

%cell arrays (width and length of map) 

  

for h=1:1200 

    for k=1:1200 

        if MaskN(1900+h,2600+k)==101 

             

            %create year series 

             

            for l=1:size(fileListNE,1) 

             

            seriesNE(l)=TbNE{l,2}(h,k); 

            seriesNM(l)=TbNM{l,2}(h,k); 

                    

            end 

             

            %Create the series extentions 

             

           for p=1:20 

                

               elongationseriesNE1(p)=TbNE1{p,2}(h,k);   

               elongationseriesNM1(p)=TbNM1{p,2}(h,k);                            

               elongationseriesNE_1(p)=TbNE_1{p,2}(h,k);              

               elongationseriesNM_1(p)=TbNM_1{p,2}(h,k); 

                             

           end 

                              

           dayNE=[1:1:(size(fileListNE,1)+40)]; 

           dayNM=[1:1:(size(fileListNM,1)+40)]; 

            

           %Create the extended series 

            

           extNE=horzcat(elongationseriesNE_1,seriesNE,elongationseriesNE1); 

           extNM=horzcat(elongationseriesNM_1,seriesNM,elongationseriesNM1); 

            

                     

            %find zeros and nan and put an empty value 

            zerosNE=find(extNE==0); 

            nanNE=find(isnan(extNE)); 

            zerosNM=find(extNM==0); 

            nanNM=find(isnan(extNM)); 

             

            extNE(zerosNE)=[]; 

            dayNE(zerosNE)=[]; 

            extNE(nanNE)=[]; 

            dayNE(nanNE)=[]; 

            extNM(zerosNM)=[]; 

            dayNM(zerosNM)=[]; 

            extNM(nanNM)=[]; 

            dayNM(nanNM)=[]; 

            

            %Interpolation 

             

            %interpolation 

   TbrightnessNE=interp1(dayNE,extNE,[1:1:(size(fileListNE,1)+40)],'pchip'); 
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   TbrightnessNM=interp1(dayNM,extNM,[1:1:(size(fileListNE,1)+40)],'pchip'); 

             

            %fill cell array with interpolated values     

            for m=1:size(fileListNE,1)          

              

            TbNE{m,2}(h,k)=(TbrightnessNE(m+20)); 

            TbNM{m,2}(h,k)=(TbrightnessNM(m+20)); 

             

            end 

             

             %winter mean computation 

            for j=1:60 

            janfebTbNE(j)=TbNE{j,2}(h,k); 

            janfebTbNM(j)=TbNM{j,2}(h,k); 

            end 

            WinterMeanTbNE(h,k)=mean(janfebTbNE); 

            WinterMeanTbNM(h,k)=mean(janfebTbNM); 

             

            %cell array of nanvectors containing the positions of 

            %interpolated values 

            InterpolatedTbNE{h,k}=nanNE; 

            InterpolatedTbNM{h,k}=nanNM; 

             

        else 

            WinterMeanTbNE(h,k)=0; 

        WinterMeanTbNM(h,k)=0; 

        InterpolatedTbNE{h,k}=0; 

        InterpolatedTbNM{h,k}=0; 

             

        end       

    end 

end 

  

  

%Save the cube 

%Add path of the folder where to save the interpolated data 

  

save(['/home/pcolosio/outputs/InterpTb/Green-

land1994.mat'],'TbNE','TbNM','InterpolatedTbNE','InterpolatedTbNM','Winter-

MeanTbNE','WinterMeanTbNM','-v7.3'); 

  

  

Code 2 
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In this chapter we apply a selection of the algorithms described in Chapter 3 to detect and 

map melting over Greenland and Antarctica ice sheets.  

Firstly, we evaluate the different algorithms applied to the enhanced resolution dataset, 

evaluating qualitatively and quantitatively the behavior and the performances, performing a 

validation using in situ data and outputs of a regional climate model. 

Secondly, after the computation of melting maps on a daily scale for the whole 37 years 

time series, we evaluate trends for significant melting indicators previously proposed in literature 

and melting season. 

Finally, we discuss the effects detected by PMW sensors of the extreme melting event 

during the year 2012. 

 

 
 

 

We use data recorded by stations of the Greenland Climate Network (GC-Net; Steffen et 

al., 1996) to assess the performance of the enhanced resolution product in detecting the presence 

of liquid water over the Greenland ice sheet. The 18 AWSs provide continuous measurements of 

air temperature, wind speed, wind direction, humidity, pressure and other parameters. In the 

absence of direct observations of melting, we use air temperature (3 m) to extrapolate those 

instances when liquid water is present, following the procedure adopted by Tedesco (2009). We 

focus on four stations: (1) Summit (72° 34’ 47” N, 38° 30’ 16” W, Elevation 3254 m a.s.l.), 

located in the dry snow zone, when melting generally does not occur, (2) Swiss Camp (69° 34’ 

06” N, 49° 18’ 57” W, Elevation 1149 m a.s.l.) and (3) JAR1 (69° 29’ 54” N, 49° 40’ 54” W, 

Elevation 962 m a.s.l.), located in the ablation region, and (4) Humboldt (78° 31’ 36” N, 56° 49’ 
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50” W, Elevation 1995 m a.s.l.), located at higher elevation where melting may occur or not. 

More information about the GC-Net dataset can be found at 

http://cires1.colorado.edu/steffen/gcnet/. 

To assess the performance of meltwater detection algorithms over the Antarctica ice sheet 

we use surface/air temperature data collected by AWS in the framework of Antarctica Automatic 

Weather Stations Program (AAWSP). Differently to air/surface data from GC-Net (hourly 

collected), here we adopt a hourly average of the data collected every 10 minutes. We focus on 

two locations, adopted also in Tedesco (2009), where melting generally occurs: (1) Larsen Ice 

Shelf (67.97 S, 60.55 W, 17 m a.s.l.) and Uranus Glacier (71.43 S, 68.93 W, Elevation 780 m 

a.s.l.) stations.  

 

Figure 26: Automatic weather station of Greeenland Climate Network. 

 

In addition to satellite and in situ measurements, we use outputs from Modèle 

Atmosphérique Régional (MAR) to compare the results obtained from the enhanced resolution 

PMW dataset at 3.125 km here presented with the coarser resolution dataset over Greenland. 

MAR is a modular atmospheric model that uses the sigma-vertical coordinate to simulate airflow 

over complex terrain and the Soil Ice Snow Vegetation Atmosphere Transfer scheme (SISVAT) 

http://cires1.colorado.edu/steffen/gcnet/
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[e.g., De Ridder and Gallée, 1998] as the surface model. MAR outputs have been assessed over 

Greenland [e.g., Fettweis et al., 2005; Alexander et al., 2014]. The snow model in MAR, which 

is based on the CROCUS model of Brun et al. (1992), calculates albedo for snow and ice as a 

function of snow grain properties, which in turn depend on energy and mass fluxes within the 

snowpack. Lateral and lower boundary conditions are prescribed from reanalysis datasets. Sea-

surface temperature and sea-ice cover are prescribed using the same reanalysis data. The 

atmospheric model within MAR interacts with the CROCUS model, which provides the state of 

the snowpack and associated quantities (e.g., albedo, grain size). In this study we use outputs 

from MAR version v3.9 characterized by an enhanced computational efficiency and improved 

snow model parameters (Fettweis et al., 2017). The model is forced at the boundaries using ERA-

Interim reanalysis (see Dee et al. (2011) for detailed description) at spatial resolution of 7.5 km. 

In order, to compare outputs from MAR and the estimates of meltwater extent obtained from 

PMW data, we average the LWC simulated by MAR along the vertical profile, as done in Fettweis 

et al., 2007. Note that we only use MAR outputs over Greenland because, despite available also 

over Antarctica, the spatial resolution of the MAR outputs currently available (35 km) is too 

coarse to be compared with the results of the enhanced resolution product.  

 

 

In this work we use T-B algorithms only. We applied the fixed threshold of 245 K (denoted 

as 245K, from this point), the increment of 30 K over the winter brightness temperature (M+30) 

with two respective sensitivity analysis of 35 K (M+35) and 40 K (M+40) and the thresholds 

coming from the microwave emission model of layered snowpack considering LWC=0.2% 

(MEMLS). Here the MATLAB algorithm used to create the binary melting maps is presented. 

 

%% Melting Map Greenland 1994 

  

clear all 

tic 

addpath('/home/pcolosio/outputs/InterpTb'); 

addpath('/home/pcolosio/outputs/MeltingMaps'); 

addpath('/home/pcolosio/Mask'); 

  

%Load brightness temperature file (the beautiful one you created) 

load('/home/pcolosio/outputs/InterpTb/Greenland1994.mat') 

  

%Open binary Mask File (5760*5760) 

%Mask for North 
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dirListMaskN=dir(fullfile('/home/pcolosio/Mask/EASE2_N3.125km.LO-

CImask_land50_coast0km.5760x5760.bin')); 

fileListMaskN=char({dirListMaskN.name}); 

fidMaskN=fopen(fileListMaskN,'r'); 

MaskN=fread(fidMaskN,[5760 5760] ,'uint8'); 

fclose(fidMaskN); 

  

%Thresholds 

 

%Mplus30/35/40  

TcE=WinterMeanTbNE+30; 

TcM=WinterMeanTbNM+30; 

TcE2=WinterMeanTbNE+35; 

TcM2=WinterMeanTbNM+35; 

TcE3=WinterMeanTbNE+40; 

TcM3=WinterMeanTbNM+40; 

 

%MEMLS2 

TcE4=.48.*WinterMeanTbNE+128; 

TcM4=.48.*WinterMeanTbNM+128; 

 

%245K 

TcE5=245;%K 

TcM5=245;%K 

  

%Fixed 245K 

  

for i=1:size(TbNE,1) 

     

    TbM=TbNM{i,2}; 

     

    TbE=TbNE{i,2}; 

    

    TbM((MaskN(1901:3100,2601:3800))~=101)=0; 

    TbM(TbM<=TcM5)=0; 

    indexM=TbM>0; 

  

    TbE((MaskN(1901:3100,2601:3800))~=101)=0; 

    TbE(TbE<=TcE5)=0; 

    indexE=TbE>0; 

     

    MeltPixM(i,:)={i,indexM}; 

    MeltPixE(i,:)={i,indexE}; 

     

End 

 

save(['/home/pcolosio/outputs/MeltingMaps/GreenlandMelt-

ing2451994.mat'],'MeltPixE','MeltPixm','-v7.3'); 

  

  

%WinterMean plus 30 

 

for i=1:size(TbNE,1) 

     

    TbM=TbNM{i,2}; 

     

    TbE=TbNE{i,2}; 

    

    TbM((MaskN(1901:3100,2601:3800))~=101)=0; 
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    TbM(TbM<=TcM)=0; 

    indexM=TbM>0; 

  

    TbE((MaskN(1901:3100,2601:3800))~=101)=0; 

    TbE(TbE<=TcE)=0; 

    indexE=TbE>0; 

     

    MeltPixM(i,:)={i,indexM}; 

    MeltPixE(i,:)={i,indexE}; 

     

end 

 

save(['/home/pcolosio/outputs/MeltingMaps/GreenlandMelting1994.mat'],'Melt-

PixE','MeltPixM','-v7.3'); 

  

%WinterMean plus 35 

 

for i=1:size(TbNE,1) 

     

    TbM=TbNM{i,2}; 

     

    TbE=TbNE{i,2}; 

    

    TbM((MaskN(1901:3100,2601:3800))~=101)=0; 

    TbM(TbM<=TcM2)=0; 

    indexM=TbM>0; 

  

    TbE((MaskN(1901:3100,2601:3800))~=101)=0; 

    TbE(TbE<=TcE2)=0; 

    indexE=TbE>0; 

     

    MeltPixM(i,:)={i,indexM}; 

    MeltPixE(i,:)={i,indexE}; 

     

end 

  

save(['/home/pcolosio/outputs/MeltingMaps/GreenlandMelt-

ingTcMplus35K1994.mat'],'MeltPixE','MeltPixM','-v7.3'); 

  

%WinterMean plus 40 

 

for i=1:size(TbNE,1) 

     

    TbM=TbNM{i,2}; 

     

    TbE=TbNE{i,2}; 

    

    TbM((MaskN(1901:3100,2601:3800))~=101)=0; 

    TbM(TbM<=TcM3)=0; 

    indexM=TbM>0; 

  

    TbE((MaskN(1901:3100,2601:3800))~=101)=0; 

    TbE(TbE<=TcE3)=0; 

    indexE=TbE>0; 

     

    MeltPixM(i,:)={i,indexM}; 

    MeltPixE(i,:)={i,indexE}; 

     

end 
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save(['/home/pcolosio/outputs/MeltingMaps/GreenlandMelt-

ingTcMplus40K1994.mat'],'MeltPixE','MeltPixM','-v7.3'); 

  

%MEMLS2 

 

for i=1:size(TbNE,1) 

     

    TbM=TbNM{i,2}; 

     

    TbE=TbNE{i,2}; 

    

    TbM((MaskN(1901:3100,2601:3800))~=101)=0; 

    TbM(TbM<=TcM4)=0; 

    indexM=TbM>0; 

  

    TbE((MaskN(1901:3100,2601:3800))~=101)=0; 

    TbE(TbE<=TcE4)=0; 

    indexE=TbE>0; 

     

    MeltPixM(i,:)={i,indexM}; 

    MeltPixE(i,:)={i,indexE}; 

     

end 

  

save(['/home/pcolosio/outputs/MeltingMaps/GreenlandMeltingTc-

MEMLS1994.mat'],'MeltPixE','MeltPixM','-v7.3'); 

toc 

 

Code 3 

 

The code creates for each threshold selected a cell array containing 365 (366) binary maps 

in which pixels where melting is detected are assigned with the value 1, non-melting pixels with 

value 0. 

In this part we first discuss the application of the selected T-B algorithms, providing a 

qualitative evaluation of the strength and limitations of these approaches. Then, a quantitative 

evaluation proposed by Tedesco (2009) has been adopted to quantify the performances of the 

methodology adopted. Then, using both AWS and MAR data, we compare the results and 

quantify the improvements in melt detection obtained by means of the enhanced resolution 

product. 
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Figure 27: Time series of enhanced Tb at 37 GHz, horizontal polarization, over two pixels of Greenland with a) no 

melting and b) melting occurring throughout the year 2008. Threshold values obtained with the different detection 

algorithms are also reported as horizontal lines.   

 

 

 

 

Figure 27 shows the time series of enhanced Tb at 37 GHz, horizontal polarization, over 

two locations where melting is not present (Figure 27a) and where it is occurring during summer 

(Figure 27b).  The threshold values obtained with the different detection algorithms are also 

reported as horizontal lines. Specifically, MEMLS indicates the value obtained using the MEMLS 

model in the case of 0.2 % LWC, 245k indicates the algorithm using the fixed threshold value of 

245 K, and M+30K, M+35K and M+40K indicate the approach considering the winter mean plus, 

respectively, 30K, 35K and 40K. The values of 35K and 40K were selected to test the sensitivity 

of the Zwally and Fiegles (1994) approach to the threshold value and to evaluate whether a more 

conservative approach for this algorithm might reduce the number of false positive instances 

detected with this algorithm (e.g., when PMW indicates that melting is occurring when it is not). 

The time series of Tb values shown in Figure 27a clearly indicate that no melting occurs for that 

pixel. Consistently, both the MEMLS and the 245K algorithms do not suggest the presence of 

liquid water (e.g., threshold values are higher than the maximum Tb). However, the M+30K (and 
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similar algorithms) suggest a threshold value that is too low, hence pointing out to the potential 

presence of melting. We also note that the choice of 30K suggests the presence of melting for 

most of the summer months, where the choice of 40K suggests melting only for a few days. This 

points out to an extreme sensitivity of this approach to the choice of the threshold value, especially 

in those cases (like this one), when the mean winter Tb value is relatively low and the summer 

Tb peak is mainly driven by the seasonal increase of surface temperature rather than by the 

presence of melting. Melting clearly occurs in the case of Figure 27b, characterized by the sharp 

and substantial increase of Tb beginning around mid-May. For this case, all algorithms detect 

melting, with the M+30K being the most sensitive and the 245K fixed threshold being the most 

conservative one. However, we note that the M+30K (and in part also the M+35K) detects melting 

during September where it might not occur. Indeed, melting can be assumed to be over when the 

sharp drop in the recorded Tb occurs around day 240. After this, the relatively high Tb values are 

very likely associated with relatively higher surface temperatures. This false detection problem 

of M+30, M+35 and M+40 appears to follow spatial patterns related to the winter brightness 

temperature mean. The areas affected the most are in fact the ones characterized by a very low 

winter Tb value while (generally dry all the year) while in areas with higher winter Tb the 

overdetection problem is lower, as it can be seen in southern areas. This problem disappears 

completely in the case of 245 K algorithm and almost completely in case of MEMLS algorithm. 

This is because M+ΔTb algorithms, even considering the snow conditions before the melting 

season taking the average of the winter brightness temperature, do not take into account these 

properties in the computation of the increment ΔTb. In fact, these threshold algorithms consist in 

a rigid translation of a fixed ΔT of the winter mean surface. On the contrary, MEMLS algorithm 

is based on the linear regression of the ΔTb as function of different combinations of dry snow 

condition (LWC=0) i.e. different winter brightness temperature mean. Accordingly, the 

transformation of the winter mean surface is not a simple rigid translation but a linear 

transformation, providing an appropriate threshold value taking into account the conditions of the 

snow before melting and, at the same time, following a more consistent approach related to the 

amount of LWC to be detected in the snowpack. It is still necessary to notice that this problem of 

overdetection is not associated to every dry pixel, as it can be seen in Figure 29 showing the 

timeseries of Tb and Tair at Summit, location generally not affected by melting. For what concerns 

245 K algorithm, it appears to be the most conservative, detecting melting only when Tb reaches 

the highest values. This is consistent with the idea that above the value of 245 K there is no further 

increment in brightness temperature due to an increment of LWC. Beside the timeseries, Figure 
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10 shows the melt detection maps obtained using the different approaches for the day July 13th, 

2008. Also, in this case the M+30K and M+35K algorithms suggest melting up to high elevations, 

within the dry snow zone. The analysis of in-situ data and reanalysis surface temperature (not 

shown here) indicates that this was not the case, pointing again to the potential overestimation of 

melting for these two approaches. The M+40K and MEMLS show similar results where the 

approach using the fixed threshold of 245K shows, as expected, the most conservative estimates.  

 

Figure 28: Melting maps obtained by using M+30, M+35, M+40, 245K and MEMLS2 algorithms over Greenland 

Ice sheet on July 13th, 2008.  

 

Figure 29: Timeseries of brightness temperature and air temperature at Summit, year 2001.  
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In order to assess the skills of different threshold algorithms to detect melting, we 

compared the results obtained from the PMW data analysis with data from automatic weather 

station (GC Net data for Greenland and AAWSP data for Antarctica, presented previously). In 

the case of the AWS data, the presence of LWC within the snowpack is usually estimated from 

the analysis of the surface air temperature, assuming the occurrence of melting in days when 

Tair>0. However, melting also occurs through radiative forcing (e.g., solar radiation) when surface 

temperature is still below 0ºC. Moreover, the stations measure air temperature which can be 

different from the one within the snowpack. Therefore, we follow previous approaches in which 

different threshold values on the air temperature recorded by AWS are considered (Tedesco, 

2009). Specifically, we consider threshold values on air temperature (Th) ranging between 0ºC 

and -2°C to check the possibility of melting events. The performances of the different threshold 

values have been evaluated by considering both cases of algorithm detecting melting when it is 

not occurring (commission error) and algorithm not detecting melting when it is occurring 

(omission error). From the surface/air temperature analysis, considering the three different 

thresholds (0°C, -1°C ,-2°C), the number of days with surface/air temperature exceeding the 

thresholds are: (116,127,138) for JAR1-2004, (6,14,20) for Humboldt-2005, (75,86,94) for Swiss 

Camp-2013, (8,17,31) for Uranus Glacier-96/97, (14,39,67) for Larsen Ice Shelf-98/99. In the 

following table commission and omission errors are reported normalized with respect to the 

number of melting days suggested by air/surface temperature. First of all, the melt detection 

algorithms present better results over Greenland. For the three cases considered over Greenland, 

245K threshold seems the most conservative, presenting the lowest commission error and the 

highest omission error. The overdetection problem is clearly visible in case of M+30, M+35 and 

M+40 thresholds. This problem is avoided applying MEMLS threshold, as we conjectured before. 

For JAR1 and Swiss Camp stations, M+30 does not present the problem of large overdetection. 

However, MEMLS threshold presents slightly better results considering Tair=-2°C. In any case, 

245K is the most conservative method. The missing melting days are generally in the middle of 

the melting season when in some days the brightness temperature drops to values below the 

threshold. For what concerns the cases selected for Antarctica, the comparison with surface/air 

temperature provides higher errors. This can be a consequence of the different data available for 

Antarctica, taken every ten minutes and averaged daily. Considering Uranus Glacier station, it is 

clear that 245K fixed threshold is not able to detect melting being too high. High overdetection 
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errors are suggested by considering Tair=0°C for both Larsen and Uranus cases. These errors 

strongly decrease considering Tair=-1°C and Tair=-2°C. This is a consequence of the different 

climatic conditions in Antarctica, where strong cold winds blow resulting in lower surface/air 

temperature. In both cases selected for Antarctica, considering the lowest Tair threshold, it 

appears that the results obtained with M+30 are in both cases similar to the ones obtained with 

MEMLS. Looking at the timeseries (Figure 30b), for example, at Larsen Ice Shelf for the years 

98/99 it is possible to see that the largest part of the errors are in correspondence of a drop of Tb, 

suggesting that the sensor could not detect the liquid water content during the melting day 

detected by the surface/air temperature analysis. The drop registered the day after suggests a 

strong change of snow properties (such as increment of grain size) following a melting/thawing 

event, for examples around days 81 and 137. This drop ranges between 30 K and 40 K, the same 

order of magnitude reported in Ulaby et al. (1996) of the difference in Tb of dry and refrozen 

snow at 37 GHz for horizontal polarization. 

  

 Station JAR 1  Swiss Camp Humboldt Larsen Ice Schelf Uranus Glacier 

 Year 2004 2013 2005 98/99 96/97 
 

Tair=0 0.07 (0.24) 0.16 (0.11) 6 (0) 1.64 (0.43) 2.5 (0.13) 

M+30 Tair=-1 0.03 (0.28) 0.09 (0.17) 2.14 (0.14) 0.31 (0.51) 0.82 (0.24) 
 

Tair=-2 0.02 (0.33) 0.05 (0.21) 1.25 (0.15) 0.01 (0.55) 0.19 (0.32) 
 

Tair=0 0.07 (0.25) 0.12 (0.15) 2.67 (0) 1.36 (0.5) 1.25 (0.25) 

M+35 Tair=-1 0.03 (0.28) 0.06 (0.21) 0.79 (0.21) 0.31 (0.64) 0.29 (0.35) 
 

Tair=-2 0.02 (0.33) 0.03 (0.26) 0.45 (0.35) 0.01 (0.63) 0 (0.48) 
 

Tair=0 0.07 (0.29) 0.12 (0.19) 1 (0) 0.86 (0.64) 0.38 (0.5) 

M+40 Tair=-1 0.03 (0.32) 0.06 (0.24) 0.14 (0.29) 0.18 (0.59) 0.06 (0.65) 
 

Tair=-2 0.02 (0.37) 0.03 (0.29) 0.05 (0.45) 0 (0.75) 0 (0.77) 
 

Tair=0 0.09 (0.19) 0.16 (0.11) 0.67 (0.17) 2.5 (0.36) 2.5 (0.13) 

MEMLS Tair=-1 0.06 (0.23) 0.09 (0.17) 0 (0.36) 0.49 (0.36) 0.82 (0.24) 
 

Tair=-2 0.01 (0.28) 0.05 (0.21) 0 (0.55) 0.06 (0.4) 0.19 (0.32) 
 

Tair=0 0.04 (0.41) 0.08 (0.4) 0.17 (0.67) 0.57 (0.64) 0 (1) 

245 Tair=-1 0.02 (0.44) 0.03 (0.42) 0 (0.79) 0.13 (0.79) 0 (1) 
 

Tair=-2 0.02 (0.49) 0.02 (0.48) 0 (0.85) 0 (0.81) 0 (1) 

 

Table 5: Commission (omission) errors (normalized with respect to the number of melting days from each 

method) for the selected automatic weather stations in Greenland and Antarctica.  
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Figure 30: (a) Melting days detected by M+30, M+35, M+40, 245K and MEMLS algorithms (blue) and by 

surface/air temperature analysis (red). (b) Timeseries of brightness temperature (blue) and daily mean of 

surface/air temperature (red). The threshold values for Tb are reported as horizontal lines. Both panels (a) and 

(b) refers to Larsen Ice Shelf for the period July 1st, 1998-June 30th, 1999.  

 

For what concerns the comparison between the performances of 3.125 km and 25 km 

resolution dataset, a similar analysis has been performed with MAR outputs. In this case, the 

LWC simulated into the snowpack has been vertically averaged in the first 1 m and 5 cm 

respectively. The threshold to identify melting days has been set equal to 0.2% for both 

considered depths. This value comes from the LWC value used to simulate the emission behavior 
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to generate the threshold called MEMLS. The analysis has been performed considering Swiss 

Camp site for the year 2001 evaluating the pixels containing the location of the AWS for both 

enhanced and coarse resolution data. 

 

Tc Air Th=0°C Air Th= -1°C Air Th= -2°C LWCMAR d=1m LWCMAR d=5cm 
 

Comm. Omiss. Comm. Omiss. Comm. Omiss. Comm. Omiss. Comm. Omiss. 

 

Spatial resolution 3.125 km 

M+30 2 (2.02) 17 

(17.17) 

1 (0.92) 26 

(23.85) 

0 (0) 41 

(32.8) 

7 (7.78) 13 

(14.44) 

3 (3.09) 16 

(16.49) 

M+35 2 (2.02) 21 

(21.21) 

1 (0.92) 30 

(27.52) 

0 (0) 45 (36) 6 (6.67) 16 

(16.78) 

2 (2.06) 19 

(19.59) 

M+40 2 (2.02) 25 

(25.25) 

1 (0.92) 34 

(31.19) 

0 (0) 49 

(39.2) 

5 (5.58) 19 

(21.11) 

1 (1.03) 22 

(22.68) 

MEMLS 3 (3.03) 15 

(15.15) 

1 (0.92) 23 

(21.1) 

0 (0) 38 

(30.4) 

9 (10) 12 

(13.33) 

4 (4.12) 14 

(14.43) 

245K 2 (2.02) 36 

(36.36) 

1 (0.92) 45 

(41.28) 

0 (0) 60 (48) 4 (4.44) 29 

(32.22) 

1 (1.03) 33 

(34.02) 

 

Spatial resolution 25 km 

M+30 4 

(4.04) 

21 

(21.21) 

1 

(0.92) 

28 

(25.69) 

0 (0) 43 

(34.4) 

8 (8.89) 16 

(17.78) 

3 

(3.09) 

18 

(18.56) 

M+35 3 

(3.03) 

24 

(24.24) 

1 

(0.92) 

32 

(29.36) 

0 (0) 47 

(37.6) 

7 (7.78) 19 

(21.11) 

2 

(2.06) 

21 

(21.65) 

M+40 3 

(3.03) 

27 

(27.27) 

1 

(0.92) 

35 

(32.11) 

0 (0) 50 (40) 7 (7.78) 22 

(24.44) 

2 

(2.06) 

24 

(24.74) 

MEMLS 8 

(8.08) 

14 

(14.14) 

4 

(3.67) 

20 

(18.35) 

2 (1.6) 34 

(27.2) 

15 

(16.67) 

12 

(13.33) 

9 

(9.28) 

13 

(13.40) 

245K 2 

(2.02) 

45 

(45.45) 

1 

(0.92) 

54 

(49.54) 

0 (0) 69 

(55.2) 

3 (3.33) 37 

(41.11) 

1 

(1.03) 

42 

(43.30) 

 

Table 6: Commission and omission errors (as percentage with respect to the number of melting days from each 

method) for the comparison between coarse and enhanced resolution PMW data. 

 

The number of melting days detected by the chosen algorithms are 84 for M+30, 80 for 

M+35, 76 for M+40, 65 for 245 K and 87 for MEMLS. For what concerns ground data and model 

outputs the melting days are 99 for Tair=0°C, 109 for Tair = -1°C, 125 for Tair = -2°C, 90 in case 

of average LWC=0.2 in the first 1 m of snow and 97 in case of average LWC=0.2 in the first 5 
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cm of snow. From the computed commission and omission errors it is clear that the threshold of 

245 K is the most conservative. In fact, it provides the lowest commission error but the highest 

omission, not being able to detect melt events out of the sustained melting season. Moreover, a 

significant number of melting days not detected by 245 K is in the middle of the melting season 

since Tb in some days drop to values lower than 245 K even if the snowpack is wet according to 

MAR outputs. Significant improvements (up to more than 9%) can be observed in this case 

passing from 25 km resolution to 3.125 km resolution. For what concerns M+30, in the case of 

SC it presents good results in terms of both low commission and omission errors and showing an 

improvement in representing the in-situ data. However, even if the behavior of this threshold 

resulted appropriate in describing melt events in this case, it still presents the overdetection 

problem earlier presented in cases of low winter brightness temperature. Swiss Camp example is 

significant because shows that, in case of M+35 and M+40, even if from Figure 27 it can be seen 

that the overdetection problem seems to be gradually reduced in very cold pixels, in higher Twinter 

pixels the increment in ΔT leads only to an increment of omission errors. Thus, even using a 

higher brightness temperature increment, these threshold values result not to be suitable to be 

adopted. Moreover, passing from 25 km to 3.125 km resolution the improvement is not 

significant. For what concerns MEMLS, it presents the lowest omission errors and low 

commission errors, confirming the high sensitivity of this threshold to LWC. Passing from coarse 

to enhanced resolution there is improvement in 4 cases, a decreased performance in 3 cases and 

any change in 1 case. Checking the timeseries it appears that Tair exceeds the threshold values 

selected detecting melting in winter periods but there is any presence of LWC from MAR outputs 

and any peak in PMW data. Hence, the omission error of all the algorithms tested with the air 

temperature approach are overestimated. However, there is a melting event after the main melting 

season detected through both AWS and MAR data but not by PMW algorithms even if it is 

possible to see a small peak in the timeseries, not big enough to exceed any threshold. This is a 

possible consequence that every threshold value applied (except 245 K) considers dry snow 

conditions before the melting season. Right after the melting season the brightness temperature 

appears to be slightly lower than January/February average, possibly because of an increment in 

grain size, leading to a lower emissivity. Hence, even if a LWC>0.2% is present in the first 5 cm 

of snowpack and MEMLS is supposed to detect these types of melting events, MEMLS threshold 

is too high because it does not take into account the grain size evolution after melting. The 

presence of LWC, in fact, can affect emission properties of the snowpack also after refreezing or 

runoff, influencing the evolution of the snow grains. In addition, there is also an early melt event 
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detected through PMW and AWS but not through MAR. A closer look to the time series shows 

that in correspondence of 108th day of the year LWC reaches the value of 0.12%. This means that 

in some cases MEMLS algorithm can detect melting even if the LWC is lower than 0.2%, possibly 

because the coefficients of the algorithm come from a linear regression of the electromagnetic 

model outputs. 

Looking at the timeseries of LWC in the first meter of snowpack obtained from MAR 

outputs, it is possible to distinguish between two types of melting events: (1) strictly surface 

melting, affecting the first few centimeters of the snowpack, and (2) in-depth melting, affecting 

the snowpack from the surface up to around the first meter. 

According to this distinction, the vertical profiles of LWC have been averaged considering 

the first 5 cm and the fist 1m of snowpack. The timeseries of averaged LWC have been compared 

with brightness temperature timeseries with the 245K and MEMLS thresholds and with the AWS 

temperature at Swiss Camp. 

As shown in Figure (31), the threshold based on MEMLS outputs can detect melting from 

PMW data in conjunction with the peaks of LWC averaged on the first 5 cm and the exceedance 

of 273.15 K of surface temperature from AWS, showing a higher sensitivity to strictly surface 

melting with respect to 245 K. This is consistent with the rationale behind the development of the 

threshold based on MEMLS outputs. In fact, this threshold has been computed, as explained 

previously, looking at the presence of 0.2% of LWC. 

On the contrary, the fixed threshold of 245 K appears to be highly efficient if compared 

with the timeseries of LWC averaged on the first meter of snowpack. In fact, 245 K is considered 

as the threshold above which a further increase of LWC does not lead to a further increase of 

brightness temperature, as it is possible to see in the central part of the timeseries. It can be 

concluded that this threshold value can better evaluate in-depth melting.   

These results related to the vertical extension of LWC into the snowpack are consistent 

with the expected electromagnetic emission of the two considered cases. A snowpack in which 

only a surface layer of few centimeters presents LWC, even if the imaginary part of the 

electromagnetic permittivity increases (absorption), the real part (scattering) of the layers below 

is big enough to mitigate the increment of emissivity. Thus, these peaks of brightness temperature 

are detected by MEMLS but not by 245 K algorithm. Once LWC reaches lower layers (in-depth 

melting) the values of brightness temperature increase and melt is detected also by means of 245 

K threshold. In fact, when liquid water is present also in deeper layers the thickness of dry snow 
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contributing to the scattering of the emission becomes significantly lower than the thickness of 

wet snow contributing to absorption. 

Following these considerations, we propose with two different methodologies for melt 

detection over Greenland. The fixed 245 K threshold is efficient for studies related to high liquid 

water content and in-depth melting in the snowpack, such as hydrological analysis and studies on 

melting onset date (MOD), melting end date (MED) and melt duration (MD). On the other hand, 

the threshold from MEMLS can be adopted if the interest of the study is the analysis of strictly 

surface melting, as generally are early melting events and some exceptional melting events.  

 

Figure 31: LWC from MAR averaged through the first layer of 5 cm and 1 m of snowpack (plots at the top), time 

series of the LWC profile from MAR in the first 1m of snowpack (center) and time series of 37 GHz horizontal 

polarization brightness temperature, air temperature from AWS and thresholds for Swiss Camp site in 2001. 

 

 

 
 

Here we present a long-term trend analysis of different melting parameters for Greenland 

and Antarctica cases. Trends have been evaluated along the available time period of 37 years, 

enough to be considered representative of changing climatic conditions.  

For this purpose, some parameters representing the entity of melting have been selected. For both 

Greenland and Antarctica, in order to evaluate the temporal coverage of melting the melt duration 
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has been computed, evaluated as the sum of all the days when melting has been detected. This 

parameter has been computed both globally as mean melt duration (MMD), to evaluate the overall 

variation over the ice sheets, and at pixel scale, to identify the areas affected the most by the 

increment of melting days over the year. In addition to the overall mean melt duration, two others 

synthetic melting parameters have been evaluated following the proposed work of Torinesi et al. 

(2003), the maximum melting surface (MMS) and the cumulative melting surface or melting in-

dex (MI; Tedesco et. al, 2007). The former represents the maximum extent of melting area, i.e. 

the sum of the pixels in which melting has been detected at least once, while the latter is the sum 

of the melting pixel days multiplied by the area of the pixel (3.125 km * 3.125 km). Moreover, 

for what concerns Greenland, a new approach has been proposed following the outputs of MAR 

model suggesting that the occurrence of persistent melting can be well detected by 245K approach 

while MEMLS2 approach can identify early (or late) strictly surface melting (minor entity 

events). In this way melting onset day (MOD) and melting end date (MED) have been computed, 

respectively, considering the first two following melting days and the last melting day of the year 

for each pixel, using the outputs of 245K threshold. The number of melting days detected by 

MEMLS2 algorithm outside the temporal window of the melting season (MS=MOD-MED) has 

been classified as minor melt events. These parameters have been computed for every available 

year of the time series in order to understand whether it is possible to see a trend over the 37 years 

considered and quantify it. To evaluate the statistical significance of the trends computed (both 

pixel-by-pixel scale and synthetic indexes) the p-value has been evaluated. The p-value is defined 

as the probability, under the assumption of a null hypothesis 𝐻, of obtaining a result equal or 

higher than the observed. In practice with the evaluation of the p-value we are testing the signif-

icance level α of the hypothesis test. By fixing α equal to 0.1 (or 0.05), if p-value< α, the test is 

90% (or 95%) statistically significant. In this work we considered 95% statistically significant 

trends only, for both pixel-by-pixel and overall melting parameters selected.  

Here an example of the code adopted for the trend calculation is presented. For the trend compu-

tation the function polyfit has been used while for the evaluation of the p-value the function 

corrcoeff has been adopted. 

 

%% Trend analysis melt duration%% 

clear all 

 

% Load melt duration map files 

addpath('D:\UNI\Tesi\Tb\MELT DURATION') 

  



86 

 

%Cicles for X and Y directions in which linear fitting of the variables is  

%computed 

  

dirList=dir(fullfile('D:\UNI\Tesi\Tb\MELT DURATION\Melt*')); 

fileList=char({dirList.name}); 

  

%read mask to compute the total number of pixels 

fidMaskN=fopen('D:\UNI\Tesi\Tb\Mask\EASE2_N3.125km.LO-

CImask_land50_coast0km.5760x5760.bin','r'); 

MaskN=fread(fidMaskN,[5760 5760] ,'uint8'); 

fclose(fidMaskN); 

mask=imread('D:\UNI\Tesi\Tb\Mask\GreenlandMask.png'); 

MaskN(transpose(mask(:,:,1)==0))=0; 

Mask=MaskN(1901:3100,2601:3800); 

  

trendMD245=zeros(1200,1200); 

pvalMD245=zeros(1200,1200); 

trendMDM30=zeros(1200,1200); 

pvalMDM30=zeros(1200,1200); 

trendMDM35=zeros(1200,1200); 

pvalMDM35=zeros(1200,1200); 

trendMDM40=zeros(1200,1200); 

pvalMDM40=zeros(1200,1200); 

trendMDMEMLS=zeros(1200,1200); 

pvalMDMEMLS=zeros(1200,1200); 

  

  

  %Create cell array of variables 

 

for i=1:37 

    file=strtrim(fileList(i,:)); 

    load(file); 

     

   

    MD_245cell(i,:)={MD_245}; 

    MD_Mplus30cell(i,:)={MD_mplus30}; 

    MD_Mplus35cell(i,:)={MD_mplus35}; 

    MD_Mplus40cell(i,:)={MD_mplus40}; 

    MD_MEMLScell(i,:)={MD_MEMLS}; 

     

end 

 

  

 

for j=1:1200 

    for k=1:1200 

        if Mask(j,k)==101 

            for m=1:37 

                md245(m)=MD_245cell{m}(j,k); 

                md30(m)=MD_Mplus30cell{m}(j,k); 

                md35(m)=MD_Mplus35cell{m}(j,k); 

                md40(m)=MD_Mplus40cell{m}(j,k); 

                mdMEMLS(m)=MD_MEMLScell{m}(j,k); 

                y(m)=m;             

            end 

 

            %linear fitting 

            p245=polyfit(y,md245,1); 

            pM30=polyfit(y,md30,1); 
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            pM35=polyfit(y,md35,1); 

            pM40=polyfit(y,md40,1); 

            pMEMLS=polyfit(y,mdMEMLS,1); 

            %regression line 

            t245=y.*p245(1)+p245(2); 

            tM30=y.*pM30(1)+pM30(2); 

            tM35=y.*pM35(1)+pM35(2); 

            tM40=y.*pM40(1)+pM40(2); 

            tMEMLS=y.*pMEMLS(1)+pMEMLS(2); 

            %p-value 

            [r245,pv245]=corrcoef(md245,t245); 

            [rM30,pvM30]=corrcoef(md30,tM30); 

            [rM35,pvM35]=corrcoef(md35,tM35); 

            [rM40,pvM40]=corrcoef(md40,tM40); 

            [rMEMLS,pvMEMLS]=corrcoef(mdMEMLS,tMEMLS); 

             

            trendMD245(j,k)=p245(1); 

            pvalMD245(j,k)=pv245(1,2); 

            trendMDM30(j,k)=pM30(1); 

            pvalMDM30(j,k)=pvM30(1,2); 

            trendMDM35(j,k)=pM35(1); 

            pvalMDM35(j,k)=pvM35(1,2); 

            trendMDM40(j,k)=pM40(1); 

            pvalMDM40(j,k)=pvM40(1,2); 

            trendMDMEMLS(j,k)=pMEMLS(1); 

            pvalMDMEMLS(j,k)=pvMEMLS(1,2); 

        end 

    end 

end 

  

%save the outputs 

save(['D:\UNI\Tesi\Tb\Trend\Trend_pvalue_MD_245_M303540_MEMLS.mat'],'trendMD

245','pvalMD245','trendMDM30','pvalMDM30','trendMDM35','pvalMDM35','trendMDM

40','pvalMDM40','trendMDMEMLS','pvalMDMEM-

LS','MD_245cell','MD_Mplus30cell','MD_Mplus35cell','MD_Mplus40cell','MD_MEM-

LScell','-v7.3'); 

 

Code 4 

 

The same procedure adopted for each pixel (lines into the two for and the if statements) 

has been applied also for the synthetic parameters. 

 

 

 

In the case of Greenland, a general positive trend has been recorded, indicating an overall 

increment of the melting season. Melt duration has shown the highest statistical significance, 

being the most stable and reliable trend among the pixel-by-pixel parameters analyzed. It presents 

zero or positive trend in all pixels as can be seen in Figure, with higher values moving towards 

the coastline and maxima in the ablation zone. The spatial correlation with the distance of the 

ocean suggests that land/ocean processes influence is a major factor in surface melting events. 
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Moreover, the area where melt duration presented the lowest increment are the area at high 

altitudes. The pixel-by-pixel trends have been averaged obtaining that on average the melt 

duration has increased of 0.5466 days every year since 1980, with a standard deviation of 0.5033 

days/year for 245K algorithm while in increased of 0.781 days/year with a standard deviation of 

0.4594 days/year in case of MEMLS2 algorithm. 

 

 

Figure 32: Maps of 95% statistically significant trends of melt duration (total number of melting days detected for 

each pixel) for algorithms 245 K and MEMLS2. (meanMD245= 0.5466day/year, stdevMD245 = 0.5033 day/year, 

meanMDMEMLS= 0.7841 day/year, stdevMDMEMLS = 0.4594 day/year).  

 

 

 

Figure 33: Maps of average melt onset date for the period 1980-1984 (MOD, left) and 95% statistically significant 

trends of melt onset date (right) computed following the proposed approach using 245k algorithm (statistics of the 

trends:meanMOD= -0.8577 day/year, stdevMOD = 0.5996 day/year)  



89 

 

 

 

Figure 34: Maps of average melt end date for the period 1980-1984 (MED, left) and maps of 95% statistically 

significant trends of melt end date (right) computed following the proposed approach using 245k algorithm (trend 

statistics: meanMED= 0.8782 day/year, stdevMED = 0.5677 day/year).  

 

 

Figure 35: Maps of average melt duration for the period 1980-1984 (MOD, left) and 95% statistically significant 

trends of melt duration (right) computed following the proposed approach using 245k algorithm. 

 

For what concerns melting onset and melting end dates the statistical significance reduces 

in areal extent. Melting onset and end date have been calculated by means of algorithm 245K 

according to the results presented in the previous part of this chapter. The statistically significant 

pixels presented a negative trend for MOD and positive for MED, with an average of melting 

season starting 0.8577 days earlier every year (with standard deviation of 0.5996 day/year) and 

ending 0.8782 day/year later (with standard deviation of 0.5677 day/year), indicating an average 

elongation of the melting season. Trends on melting season variable (computed as difference 
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between melt onset date and melt end date), as well as melt events detected before and after the 

melting season, present less statistically significant pixels. Nevertheless, the majority of 

statistically significant pixels is in the area of ablation with positive trend for melting season 

length, with an average of 0.3386 day/year and standard deviation 0.9342 day/year, and negative 

trends for melt events out of the melting season, with an average of -0.5985 day/year and  standard 

deviation of 0.2802 day/year. This suggests that the increased average temperature recorded in 

the arctic in the past decades elongated the length of the melting season in Greenland, with major 

effects over the ablation zone (South-West Greenland, close to Swiss Camp Site and Jakobshavn 

Glacier). In this area, where the ice loss has been recorded as the most intensive in the period 

2002-2016 from GRACE observations, the melting season is generally anticipated by some 

smaller melting events during day, detected by MEMLS algorithm as melting out of melting 

season according to the proposed approach, with snow re-freezing during night. The results 

obtained suggest a modification of the climatic condition with a reduction of small melting events 

in favor of intense melting, detected by 245K algorithm as part of the sustained melting season. 

According to this, isolated melting events will be shifted and recorded earlier and in periods when 

melting was not used to occur, as the records of last weeks prove, confirming that the occurrance 

of early and large melting events is increasing in Greenland ice sheet. In the next part of this 

chapter a case of extreme melting occurred in July 2012 will be presented. 

 

  

Figure 36: Maps of 95% statistically significant trends of melt season length (left; mean= 0.3386 day/year, std= 

0.9342 day/year) and melt events detected out of the melting season (right; mean= -0.5985 day/year, std= 0.2802 

day/year) computed following the proposed approach using 245k and MEMLS2 algorithms. 
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Finally, we calculate and discuss the synthetic parameters presented in Torinesi et al. 

(2003) and Picard & Fily (2006). For what concerns the mean melt duration (MMD) over the 

whole ice sheet, a positive highly statistically significant trend has been calculated according to 

both 245K and MEMLS algorithms with an increment of 0.34665 and 0.53903 days every year, 

respectively. The minimum MMD has been recorded in 1983 detecting 1.86 days on average 

according to 245K and 13.57 days according to MEMLS. The maximum MMD occurred in the 

extreme melting season of 2012, with 21.48 days for 245K and 45.75 days for MEMLS.  

Also, in the case of maximum melting surface (MMS), both 245K and MEMLS algorithm 

detected highly statistically significant positive trends, with 20286.59 km2/year and 13647.97 

km2/year, respectively. These values represent an increment of 1.19% and 0.8% every year of the 

total ice sheet surface. Also, for MMS the maximum has been recorded in 2012, presenting for 

both 245K and MEMLS algorithms a MMS equal to the 99% of the whole Greenland ice sheet. 

On the other hand, the minimum has been recorded in 1982, with values equal to the 20.9% of 

the total GrIS surface for 245K and 43.9% for MEMLS. Tedesco (2007) found that in the period 

1992-2005 the maximum of MMS (TES in Tedesco’s paper) is observed in 2002, while the 

minimum in 1994. To obtain that results, the DAV was applied to 37 GHz data at 25 km. Even if 

the melt detection approach is different, we use these coarser resolution results for a simple 

comparison with the outputs obtained with our approach for the high resolution data. For what 

concerns 1992, a MMS of 626425.8 km2 has been recorded with 245K and 1088535 km2 with 

MEMLS, versus 656875 km2 obtained with the DAV applied to 25km*25km gridded data. It 

appears that 245K algorithm presents results similar to the DAV approach, with an 

underestimation (with respect to Tedesco) of 4.6% for 245K while MEMLS presents an 

increment of 65%. Considering 2002 local maximum year, MMS presents values of 1304785 km2 

for 245K and 1739976.6 km2, versus 1555625 km2 for DAV. In case of 245K the reduction in the 

estimation is of 16% while increase of 11.8% for MEMLS. Finally, the calculation of the melting 

index (MI) presents positive highly statistically significant trends, with a maximum in 2012 and 

a minimum in 1983.  

In conclusion, surface melting has generally increased over Greenland ice sheet in the 37 

years period considered, indicating a significant modification of the climatic conditions in the 

Arctic and possibly being a major cause of the significant mass loss recorded. 
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Figure 37: Statistically significant synthetic melting parameters for Greenland. Mean Melt Duration (MMD, mean 

number of melting days), Melting Index (MI, number of melting days times the area subjected to melting) and 

Maximum Melting Surface (MMS, surface that has been detected as melting at least once). 

 

  

 

In the case of Antarctica, at pixel scale, melt duration (MD) only is presented, according 

to the different features and characteristics of the melting season seen at different location in the 

previous part of this chapter during the analysis of the local timeseries. For what concerns MMD, 

MI and MMS, all the three synthetic melting parameters have been computed and studied. Here 

the period of analysis is up to 2015-2016 Antarctic summer since 2017 data are not available 

completely. 

At pixel scale, trends on melt duration have been firstly calculated for the time period 

1980-2015, as done for Greenland. Antarctica, on the opposite to Greenland case, presents overall 

reduction of the melt duration at pixel scale. The 95% statistically significant trends present for 

the considered period a reduction of 0.2892 days every year with a standard deviation of 0.2642 

in case of 245K and of 0.5228 days every year with a standard deviation of 0.3440 for MEMLS.  
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Figure 38: Antarctica melt duration trends (1980-2015) from melting maps obtained with 245K (left; mean=-

0.2892 day/year, std=0.2642 day/year) and MEMLS2 (right; mean=-0.5228 day/year, std=0.3440 day/year) 

algorithms. All trends are negative, suggesting a reduction of melt duration. 

 

Figure 39: Melt duration trends (1980-2015) obtained over Antarctic Peninsula with 245K algorithm (left; mean=-

0.4757 day/year, std= 0.3068 day/year) and MEMLS algorithm (right; mean=-0.7310 day/year, std=0.3772 

day/year).  

 

Figure 40: Melt duration trends (1980-2015) obtained over Amery ice shelf with 245K algorithm (left; mean=-

0.1372day/year, std=0.0697 day/year) and MEMLS algorithm (right; mean=-0.4718 day/year, std=0.2215 

day/year).  
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Considering the huge surface of the Antarctic ice sheet, we focused our attention of the 

two area of interest shown in chapter 4: Antarctic Peninsula and the Amery ice shelf. In both 

cases the average of the trends obtained resulted negative, with a melt duration shortening of 0.48 

and 0.14 days every year according to 245K (0.73 and 0.47 days/year for MEMLS), respectively 

for the Peninsula and Amery.  

Since Picard & Fily (2006) suggested a possible bias coming from the use of long 

timeseries obtained from combination of multiple platforms, even after the consideration and the 

correction formula earlier presented has presented an improvement in the consistency of the 

timeseries, we decided to investigate MD trends considering SSM/I and SSMI/S data only, 

covering the period 1988-2016. The 29 years timeseries is still suitable for a long-term evaluation, 

being 30 years the usual temporal window considered to determine climatic conditions of a 

certain region. Also, by considering the reduced timeseries, negative trends are noticed. The 

reduction of melting season consists of 0.3522 days/year for 245K algorithm with standard 

deviation of 0.3505 and 0.6560 days/year for MEMLS with standard deviation of 0.5023.  

In addition, we computed the synthetic melting parameters for the shortened timeseries. 

In case of MMD, a highly statistically significant negative trend of 0.17 years/day for 245K and 

0.19 for MEMLS. 

On the contrary, the MMS does not present a statistically significant trend, meaning that 

on average the area affected by melting has not increased or reduced. 

For what concerns the variability of melting index, a statistically significant negative trend 

is observed. Overall negative trends are reported also by Torinesi et. al (2003) and Zwally & 

Fiegles (1994), highlighting the strong interannual variability. Considering the 245K algorithm, 

a negative trend of 1.8% every year has been found, similar value presented by Torinesi et al. in 

their work.  

These results suggest that on the Antarctic ice sheet surface melting plays a minor role in 

the surface mass balance than in the case of Greenland and that it has been decreasing in the past 

years, maintaining a big interannual variability.  

However, the uncertainties on the results over Antarctica are larger, considering that are 

either discordant and in accordance with the ones found in literature. In fact, even if considering 

different time periods, if in Torinesi et al. (2003) negative trends have been found except for the 

Peninsula (Figure 44), while Picard et al. (2007) found the opposite results (Figure 43a), with 

increasing melting all around Antarctica except for the peninsula. Also, Tedesco (2009) found 

results only in partial agreement with our results (Figure 43b), with the major differences on a 
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portion of Antarctic Peninsula. Thus, further investigation would be necessary to confirm the 

detected trends, by means of ice core analysis, comparison with other satellite data and surface 

mass balance modelling.  

However, comparing the results obtained by Tedesco (2009), who adopted the same 

algorithms on 18.7 GHz and 19.35 GHz data, with our results it appears that the cumulative 

melting maps are mostly in agreement, confirming the applicability of these data to detect melting 

events (Figure 46). 

 

 

Figure 41: Melt duration trends (1988-2015) obtained over Antarctica with 245K algorithm (left; mean=-0.3522 

day/year, std=0.3505 day/year) and MEMLS algorithm (right; mean=-0.6560 day/year, std=0.5023 day/year).  

 

 

Figure 42: Synthetic melting parameters for Antarctica for the period 1988-2016. Mean Melt Duration (MMD, 

mean number of melting days), Melting Index (MI, number of melting days times the area subjected to melting) 

and Maximum Melting Surface (MMS, surface that has been detected as melting at least once). 
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Figure 43: Results obtained by Picard et al. (2007) in panel (a) and Tedesco (2009) in panel (b) showing opposite 

trends for Peninsula (negative in the first and positive in the second) and the rest of Antarctica (positive in the first 

and negative in the second). 

 

Figure 44: Results obtained by Torinesi et al. (2003). Positive values obtained on MMD of Antarctic Peninsula 

only. 
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Figure 45: Melt duration obtained by Tedesco (2009) and in this work for the summer 2008-2009. 
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Finally, we present the extreme melt event occurred across almost the whole Greenland ice 

sheet surface in 2012. Nghiem et al. (2012) firstly presented the satellite observation of the event, 

together with in situ verification from Summit station and NEEM site. Here we present the 

capability of the presented algorithms applied to the enhanced resolution data to map the extreme 

event. 

The July 2012 melt event has been discovered by the scatterometer on the Indian Oceansat-

2 satellite and confirmed by MODIS and SSMI/S data. In 2012, LWC has been detected over 

almost the entire GrIS, also in high altitude areas like Summit station, a generally dry area where 

snow does not undergo melting. Bennartz et al. (2013) proved the contribution of low-level liquid 

clouds in the enhancing melt extent. They coupled surface-based observations, remote sensing 

data and a surface energy balance to prove that the radiative properties of clouds made of liquid 

water droplets played a key part increasing the near-surface temperature. In Figure 46, melting 

maps created by means of MEMLS approach are presented. The selected days are the ones 

presented in Nghiem et al. (2012), in order to have a first qualitative comparison of the results 

obtained. It appears that the 3.125 km resolution maps well describe the spatial distribution of the 

melt events for the four days considered and it interesting to notice that MEMLS2 melting maps 

represents well the melting event previously mapped by means of a multisensory approach (OS2, 

MODIS, PMW). Our approach provides a good representation of the event using PMW data only. 

 

Figure 46: Melting maps of extreme event days of 2012 using MEMLS2. Summit station location is marked with 

the plus symbol. 
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  On July 8th, the melt extent was according to the usual behavior of GrIS in summer melting 

season, covering South Greenland with a tendency to the ablation zone. On July 12th, the 

unprecedent melt event occurred, affecting the whole dry snow zone where melt is highly unlikely 

to occur. In ten days, the melted surface refroze reaching normal melt extent as shown by the map 

representing July 22nd. The refreezing process has however been followed by a second huge event 

on July 29th. This second event has not been discussed by Bennartz et al. (2013), and barely 

detected in Nghiem et al. (2012). As represented in the melting map, also this second event 

reached high altitude areas as Summit station. It is important to notice that Summit station is 

located at 3254 m a.s.l., and a melting event at these altitude and latitude are extremely rare, once 

every 150 years according to ice-core records from the same location (Buis & Cole, 2012). 

Considering that two strong melt events occurred, with presence of liquid water at Summit twice 

in less than 20 days, the melting season of 2012 represent an unprecedently extreme case for 

Greenland.  

A comparison with AWS data is presented (Figure 47). It is possible to see in the brightness 

temperature time series that in case of July 12th (194th day of the year), both 245K and MEMLS 

thresholds are overcome, indicating a strong presence of liquid water at Summit, according to the 

surface/air temperature clearly overcoming 0 °C. After this first melt event surface temperature 

drops together with brightness temperature, indicating the refreezing of the water in the 

snowpack. Consequently, in coincidence with July 29th (211th day of the year) a second slightly 

weaker in magnitude but not in gradient increment of surface temperature, not reaching 0 °C and 

lasting for a shorter time, is accompanied by a local maxima of brightness temperature, 

overcoming MEMLS threshold only. As discussed earlier in this chapter, melt can occur even if 

surface temperature does not overcome the 0 °C threshold, being the energy balance of snow 

influenced by other factors. The July 29th second melt event shows the characteristics of what we 

called strictly surface melting, indicating the presence of liquid water in smaller amount and a 

melt event of weaker entity. The smaller strength of the second melt event is confirmed also by 

the fact that the melt extent is reduced with respect to July 12th and indicates that the presence of 

liquid water at Summit does not indicate the total extension of melting over the GrIS. 

The 3.125 km passive microwave brightness temperature at 37 GHz (horizontal 

polarization) capability in detecting extreme melting events has been proved, observing a good 

match with in-situ data, being the smaller pixel more representative of the point location. The 2 

two large melt events occurred in 2012 have been confirmed by our analysis, showing the 

goodness of the melting maps produced also in case of extreme events. 
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Figure 47: Timeseries of air temperature (at top) and brightness temperature (at bottom) recorded at Summit for 

year 2012. It is possible to see the main melt event of July 12th (characterized by positive air temperature) detected 

by 245K and MEMLS2 algorithms. 
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In this work the surface melting over Greenland and Antarctica ice sheets has been 

analyzed by means of a recently available passive microwave brightness temperatures dataset at 

the enhanced spatial resolution of 3.125 km.  

First, in order to create the first and longest available timeseries of passive microwave 

brightness temperature at this resolution, the intercomparison of data from different satellites 

covering the time period of 37 years (1980-2016) has been performed. The results obtained 

showed the necessity of intercalibration equations to merge SMMR (1980-1987) and SMM/I 

(1987-now) data. These linear relations have been computed, applied to the data and tested 

showing an increment of consistency between the two sets of data.  

Second, the brightness temperature data availability has been discussed. Since the first 

part of the dataset (SMMR data) are collected once every two days and considering that there are 

some missing data, we decided to perform interpolation over the ice sheet (area of our interest for 

this work, applying a LOCI mask). An algorithm has been written, creating a file containing two 

cell arrays of the interpolated brightness temperature, two maps containing the values of winter 

brightness temperature averages and two cell array containing, for each pixel, a vector indicating 

the temporal position of the interpolated values to keep track of the estimated data.  

Third, the complete 37 years dataset has been used to study surface melting over 

Greenland and Antarctica ice sheet. Five algorithms has been applied to map surface melting, 

selected from literature. The performances these algorithms have been tested by means of 

automatic weather station data and a comparison with coarse resolution data has been done using 

also the outputs of a regional climate model (MAR). It resulted that the enhanced resolution data 

show lower errors than the coarse resolution for both ASW and MAR data and that, among the 

algorithms selected, 245K and MEMLS present the lower “overdetection” errors. The first, 245K, 

is the most conservative and resulted suitable to detect sustained melting; on the other hand 

MEMLS, designed to detect small amount of liquid water in the snowpack (0.2%) appears to be 

able to detect not only the sustained melting season but also early and late minor melt events. 

Better performances of MEMLS has been shown in Greenland than in Antarctica, suggesting the 

possibility of a multi-algorithm approach in order to detect the sustained melt onset and end date 

together with the days of melting occurring in a sporadic way before and after the melting season, 
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applied in the last chapter for Greenland. Then, the dataset of melting maps at 3.125 km resolution 

have been created for the period 1980-2016, for both Greenland and Antarctica. 

After the creation of the dataset, the melting maps have been used to study variability and 

changes in surface melting seasons. For what concerns Greenland, from the analysis of synthetic 

melting parameters it resulted that the mean melt duration (MMD) has increased in the past 37 

years of 0.35 to 0.54 days per year, that the cumulative melting surface (melt index, MI) increased 

of 1.8% every year (normalized with respect to the first year considered, 0.13% if normalized 

over the whole Greenland ice sheet and 365 days) and that the maximum melting surface 

increased of values between 0.17% and 1.19% every year according to the algorithm selected. 

The melt onset date occurred 0.86 days earlier while the melt end date occurred 0.87 days later 

every year on average (considering the only statistically significant trends). The number of 

sporadic melting days shows a negative trend, suggesting that the sporadic melting anticipating 

the sustained melting season slowly became part of it. Generally, in Greenland melting has 

increased in the past decades in both duration and surface extension. In the case of Antarctica, 

generally negative trends have been recorded for all the observed parameters, except in the case 

of maximum melting surface presenting any statistically significant trend. Our results are partially 

consistent with works found in literature, being both in agreement and disagreement according to 

the paper selected as comparison. Further investigations are necessary to understand the real 

behavior of surface melting in Antarctica, comparing data from different satellites, ice core data 

and model outputs. However, it does not void the shown capability of these algorithms and dataset 

in mapping melting. 

 Finally, the 2012 melting season has been presented and discussed, showing the capability 

of MEMLS algorithm to confirm the presence of liquid water at Summit station not only on July 

12th, but also on July 29th. 
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Antarctica 

  

X=F08 m1 m2 q1 q2 R2
2 d1 d2 

Morning 0.9108 0.9062 13.2273 14.0605 0.9115 0.7414 0.7686 

Evening 0.9368 0.9368 7.0417 7.0492 0.9796 0.3829 0.7728   
           

X=SMMR m1 m2 q1 q2 R2
2 d1 d2 

Morning 0.9991 1.0059 4.0517 2.8712 0.9115 0.6225 0.6633 

Evening 1.0455 1.0457 -3.7954 -3.8374 0.9796 0.8138 0.8168 

 

 

 

 



108 

 



109 

 

 

  



110 

 

  

Greenland  

  

X=F08 m1 m2 q1 q2 R2
2 d1 d2 

Morning 0.818 0.821 32.3868 31.8562 0.8803 0.6865 0.4616 

Evening 0.8494 0.8419 26.0269 27.5114 0.8127 0.1204 0.3316   
           

X=SMMR m1 m2 q1 q2 R2
2 d1 d2 

Morning 1.0753 1.0722 -11.1399 -10.5807 0.8803 0.557 0.5157 

Evening 0.9635 0.9653 11.4237 11.1226 0.8127 0.0937 0.1227 
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Antarctica 

  

X=F11 m1 m2 q1 q2 R2
2 d1 d2 

Morning 0.9962 0.996 1.7969 1.8349 0.9787 0.4804 0.4901 

Evening 1.011 1.0125 -0.9847 -1.2348 0.9774 0.344 0.3232      
 

  

X=F08 m1 m2 q1 q2 R2
2 d1 d2 

Morning 0.9816 0.9813 2.4734 2.599 0.9787 0.1012 0.085 

Evening 0.9683 0.9667 4.982 5.2688 0.9774 0.0135 -0.0094 
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Greenland 

  

     

X=F11 m1 m2 q1 q2 R2
2 d1 d2 

Morning 0.9912 0.9885 2.0405 2.537 0.9837 0.3112 -2.9053 

Evening 0.9982 1.0021 0.9787 -0.00948 0.9819 0.248 0.3101   
           

X=F08 m1 m2 q1 q2 R2
2 d1 d2 

Morning 0.9869 0.9951 2.2303 0.5283 0.9837 0.0988 0.2632 

Evening 0.9799 0.9798 3.3319 3.711 0.9819 0.0791 0.1078 
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Antarctica 

  

     

X=F13 m1 m2 q1 q2 R2
2 d1 d2 

Morning 0.9976 0.9976 0.2724 0.2924 0.9958 0.0388 0.1329 

Evening 0.9947 0.9949 0.7067 0.6719 0.9967 -0.9685 -0.747   
           

X=F11 m1 m2 q1 q2 R2
2 d1 d2 

Morning 0.9976 0.9982 0.563 0.4298 0.9958 -0.1349 0.0356 

Evening 1.0016 1.0018 -0.0662 -0.1045 0.9967 0.2831 0.2558 
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Greenland 

  

X=F13 m1 m2 q1 q2 R2
2 d1 d2 

Morning 0.9955 1.0009 2.3279 -0.2618 0.9782 0.1096 0.1404 

Evening 0.9811 0.9853 3.8308 0.1854 0.9868 -4.8218 -4.9828   
           

X=F11 m1 m2 q1 q2 R2
2 d1 d2 

Morning 0.9615 0.9773 8.3219 4.4816 0.9782 -1.7261 -0.3199 

Evening 0.9978 1.0015 0.9342 0.1854 0.9868 0.0955 0.2759 
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Antarctica 

  

     

X=F17 m1 m2 q1 q2 R2
2 d1 d2 

Morning 1.0125 1.0128 -1.9259 -1.9707 0.9963 0.1422 0.146 

Evening 1.0036 1.0038 -0.5577 -0.5874 0.9954 -0.00061 0.0092   
           

X=F13 m1 m2 q1 q2 R2
2 d1 d2 

Morning 0.9839 0.9837 2.5686 2.5966 0.9963 0.2065 0.2044 

Evening 0.992 0.9916 1.334 1.3932 0.9954 0.0224 0.0196 
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Greenland 

  

     

X=F17 m1 m2 q1 q2 R2
2 d1 d2 

Morning 1.0194 1.0294 -3.0286 -5.0125 0.9809 -0.1086 -0.0045 

Evening 1.0039 1.0069 -0.4384 -1.1614 0.9892 0.1403 0.2038   
           

X=F13 m1 m2 q1 q2 R2
2 d1 d2 

Morning 0.959 0.9528 7.2671 8.3701 0.9809 -0.1942 -0.3522 

Evening 0.982 0.9824 3.1997 3.2046 0.9892 0.2738 0.2536 
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