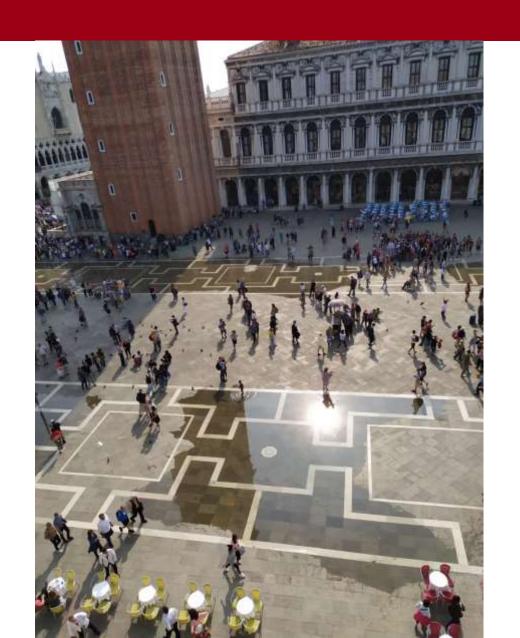


Dipartimento di Ingegneria Civile, Edile e Ambientale Corso di Laurea Magistrale in Ingegneria Civile - Indirizzo Str Tesi di Laurea in Ingegneria Civile conseguita il 4/07/2018

Il caso studio delle Procuratie Vecchie di Venezia: un esempio di recupero di un bene architettonico vincolato con valutazioni sulla rigidezza di piano

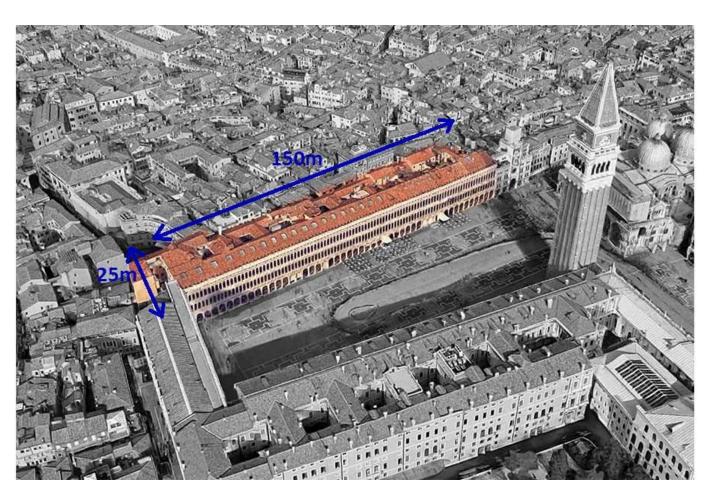
Relatore di Tesi: Prof. Renato Vitaliani

Ing. Sonia Bellin


Bando per l'assegnazione di tre premi di laurea del Collegio Ingegneri di Venezia - Macrosettore: Ingegneria Civile e Ambientale -5 Ottobre 2019

Sommario

- Ricostruzione storico-critica degli eventi legati alla fabbrica e rilievo architettonico;
- Prove di caratterizzazione dei materiali e indagini in situ compatibili con il vincolo di tutela;
- Modello Globale agli elementi finiti e scelta di analisi LINEARI;
- Verifiche Statiche;
- Verifiche Sismiche;
- Modelli Locali per valutazioni sulla rigidezza di piano dei solai e sulla rigidezza delle pareti;
- Calcolo e verifica dell'intervento di irrigidimento limitato per solai lignei.



Le Procuratie Vecchie in Piazza San Marco

Oggi: uffici aperti al pubblico e museo al piano terzo leri: residenze dei 9 Procuratori di Venezia

Cambiamento di destinazione funzionale

Valutazione del rischio sismico con progettazione degli interventi di miglioramento

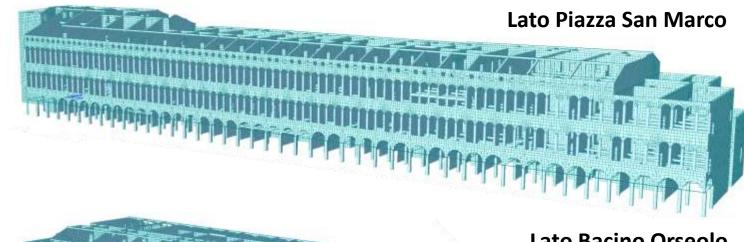
- Edificazione nel XII secolo;
- Vari interventi di restauro nella storia;
- Edificio in muratura portante di mattoni pieni;
- Estensione notevole in pianta;
- Dotato di 8 piani fuori terra di cui 4 piani nobili, 3 di ammezzato e un piano delle soffitte.

Il Modello GLOBALE

- Modellazione dei soli allineamenti murari (verifiche statiche)
- Modellazione dei solai con travetti a sezione equivalente (modi di vibrare)

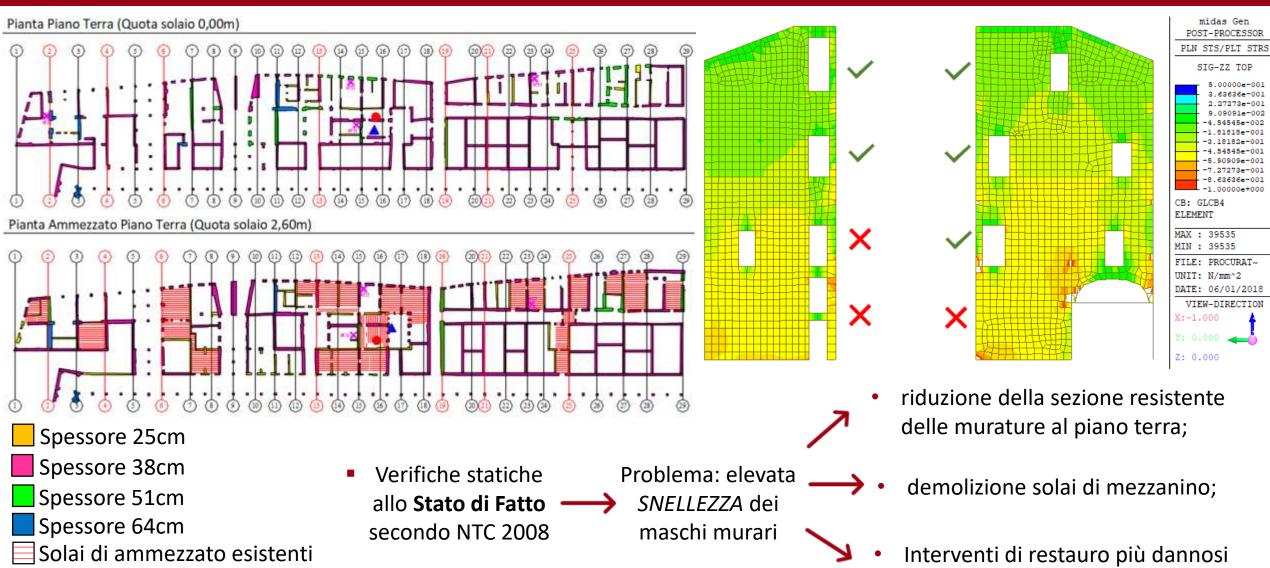
- Pilastri del porticato schema a biella;
- Vincolo di incastro alla base.

TIPO DI ANALISI:


Limitato numero prove eseguibili sui materiali (vincolo Soprintendenza)

Volontà di ottenere risultati controllabili dal Progettista

ANALISI LINEARI

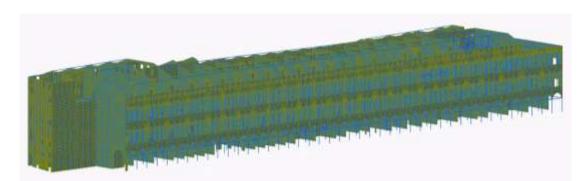


Lato Bacino Orseolo

Verifiche Statiche

che benefici.

Verifiche Sismiche


1) Applicazione al modello **GLOBALE** del *Modello Meccanico Semplificato (LV1) per palazzi e ville* (D.P.C.M. 9/02/2011);

- Metodo iterativo;
- Fattore di struttura q=2,25;
- Indice di sicurezza sismica.

	T _{SLV}	$T_{R,SLV}$	I _{S,SLV}	a _{SLV}	a g,SLV	f _{a,SLV}	Verifica I _{S,SLV}	Verifica f _{a,SLV}
Terra - 2.60 m	274,86	712,00	0,39	0,06	0,080	0,73	8	8
Ammezzato Terra-Primo - 5.20 m	141,40	712,00	0,20	0,05	0,080	0,60	8	8
Primo - 7.80 m	201,00	712,00	0,28	0,05	0,080	0,68	8	8
Ammezzato Primo-Secondo - 10.20 m	177,25	712,00	0,25	0,05	0,080	0,65	8	8
Secondo - 12.30 m	147,44	712,00	0,21	0,05	0,080	0,61	8	8
Ammezzato Secondo-Terzo - 15.00 m	352,84	712,00	0,50	0,07	0,080	0,91	8	8
Terzo - 18.60 m	1158,65	712,00	1,63	0,10	0,080	1,20	②	②
Quarto - 21.40 m	>2475	712,00	>5.2	>0.122	0,080	>1.72	②	②

2) Verifiche di meccanismi locali di collasso (scala LOCALE)

Meccanismi prevalentemente di ribaltamento:

- Tratti copertura spingente;
- Ribaltamento cantonale;
- Ribaltamento facciata su San Marco.

Pianificazione degli interventi

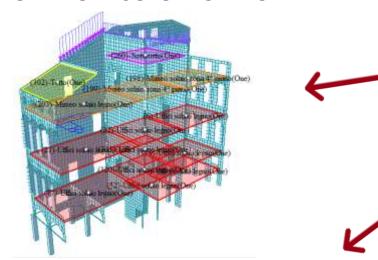
Interventi pianificati:

- Posizionamento e ripristino sezione di tiranti e catene;
- Ripristino ammorsamenti pareti;

Creazione diaframmi di piano.

Tasselli angolaremuratura

Chiodatura sul tavolato

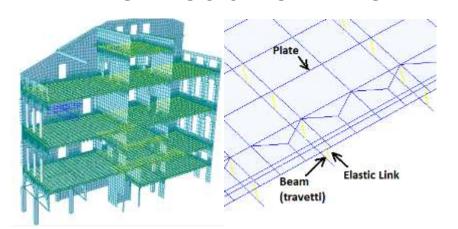


Bandelle metalliche a 45°

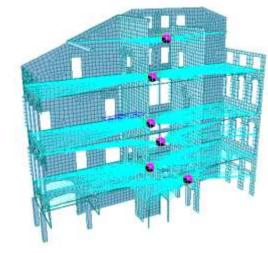
I Modelli LOCALI

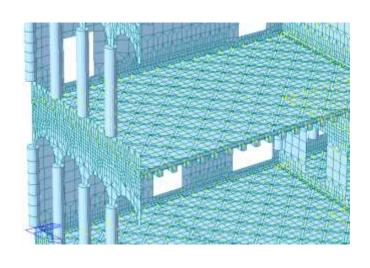
MODELLO 1: SOLO MURATURA

MODELLO 2: SOLI TRAVETTI LIGNEI

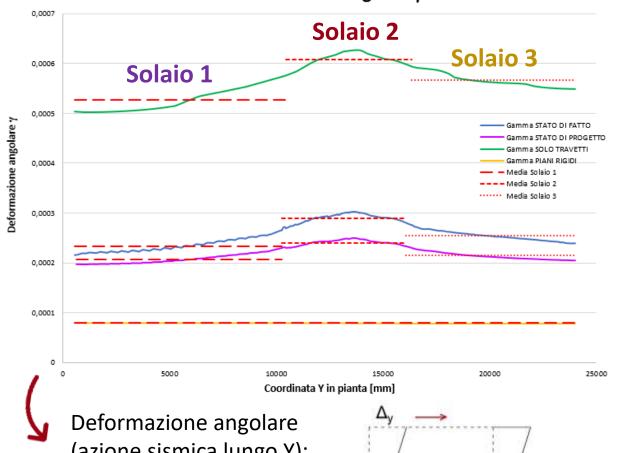


RIGIDEZZA e RESISTENZA dei solai

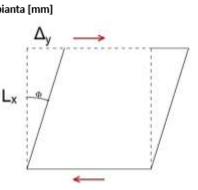

 Stima rigidezza pareti, rigidezza modello locale e stima rigidezza solaio senza test sperimentali

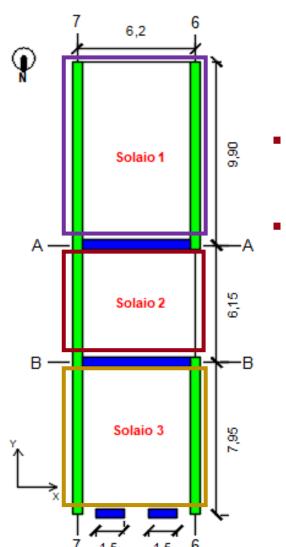

MODELLO 3: STATO DI FATTO

MODELLO 5: PIANI INFINITAMENTE RIGIDI



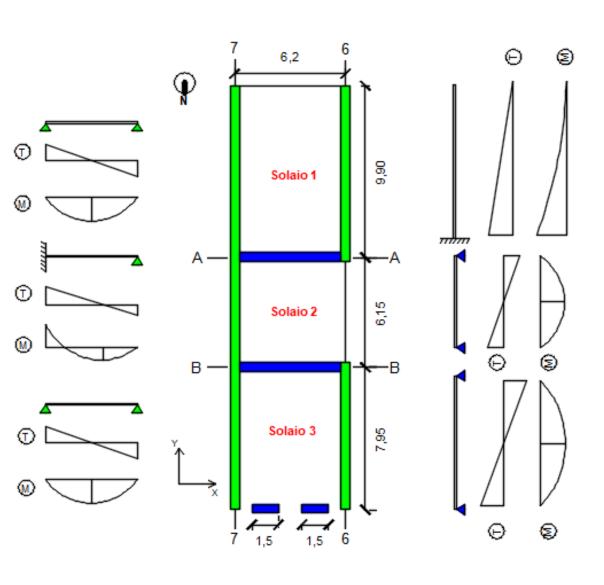
MODELLO 4: STATO DI PROGETTO


Stima della rigidezza dei diaframmi di piano

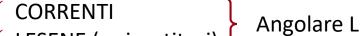


(azione sismica lungo Y):

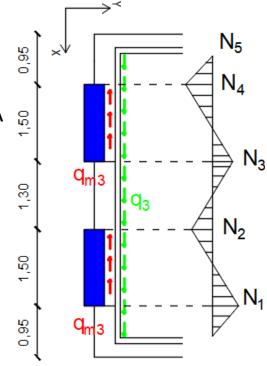
$$\gamma_{xy} = \frac{\Delta_z}{L_z}$$



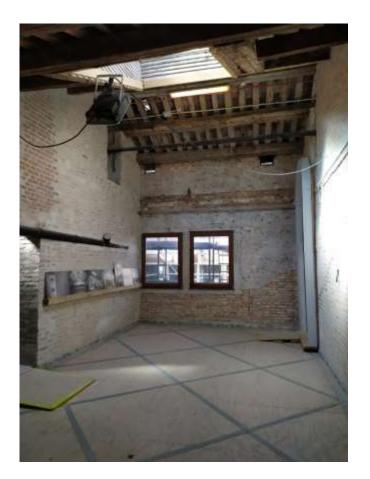
- Tavolato ligneo riduce di almeno il 53% la deformabilità tagliante;
- Riduzione di deformabilità tagliante del 67% tra stato di progetto e modello a piani rigidi


Dimostra l'intervento di irrigidimento limitato

Schemi di calcolo per l'intervento



 Dimensionamento delle componenti dell'intervento di irrigidimento limitato secondo le loro funzioni:


- ✓ LESENE (o ripartitori)
- ✓ BANDELLE METALLICHE
- ✓ CONNETTORI ANGOLARE-MURATURA
- ✓ CONNETTORI TAVOLATO-TRAVETTI

 Verifiche a SLE e SLU del solaio ligneo secondo NTC 2008 e EUROCODICE 5

Il cantiere attuale

Intervento realizzato sui solai

Rilievi geometrici integrativi

Prove di carico sui solai consolidati

Conclusioni

Il percorso delineato vuole essere una guida per il Progettista che si trovi a studiare il comportamento statico e sismico, nonché una soluzione efficace per un edificio storico, eventualmente con vincolo di tutela, a fronte di un cambiamento di destinazione d'uso dei locali interni e di una necessità di miglioramento sismico.

REALIZZABILITA' CAPILLARE SUL TESSUTO URBANO

SOLUZIONE DI PROBLEMI MULTIDISCIPLINARI

METODOLOGIA PER IL SUPERAMENTO DI MANCANZE CONOSCITIVE

Grazie per l'attenzione.

