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1. Introduction 

Machine learning is considered a specific field of artificial intelligence which has 

the capability to learn from data. This is the reason why it is so commonly used in 

very different fields of science, finance and industry nowadays. 

In this work granular materials properties are used to learn and predict their 

constitutive laws. In particular, Traction-separation laws are often highly simplistic 

due to the difficulty to propose a proper model that captures the phenomenology. 

By incorporating the micro-structural information via a Neural Network, more 

realistic and complex constitutive laws can be generated automatically. 

The goal of this thesis is to develop a Recurrent Neural Network that could predict 

the constitutive laws for granular materials that are implemented. Different 

information from multiple sub-scales can be used sequentially to generate 

macroscopic prediction with a low computational and time cost. 

The entire dataset is given by DEM simulations for granular materials but it can be 

adjusted for all kind of materials. From rocks to sand, from concrete to steel.  

The constitutive laws (traction-separation laws) obtained from homogenizing the 

DEM responses are used as the data set for training and validating the neural 

network models. 

The code written in Python, trains and predicts the constitutive relationship that 

depends on de dataset built in the previous simulations. The key of this thesis is to 

evaluate the neural network in terms of error and loss. These parameters help to 

understand if the model is predicting well the curves.  

As for the implementation, the model was written with Keras, a high-level Python 

deep learning library, to build the neural networks and complete the training 

procedure. This model-level library allows for easy and fast prototyping of machine 

learning models.  
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Three types of neural network have been developed, the Dense, LSTM and GRU. 

Differences between the models as well as their performances will be presented 

further in this work.  
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2. Elements of Machine Learning 

Machine learning is an application of artificial intelligence (AI) that provides 

systems the ability to automatically learn and improve from experience without 

being explicitly programmed. Machine learning focuses on the development of 

computer programs that can access data and use it learn for themselves. 

The process of learning begins with observations or data, such as examples, direct 

experience, or instruction, in order to look for patterns in data and make better 

decisions in the future based on the examples provided. The primary aim is to allow 

the computers learn automatically without human intervention or assistance and 

adjust actions accordingly. 

AI and machine learning algorithms aren’t new. The field of AI dates back to the 

1950s. Arthur Lee Samuels, an IBM researcher, developed one of the earliest 

machine learning programs — a self-learning program for playing checkers. In fact, 

he coined the term machine learning. His approach to machine learning was 

explained in a paper published in the IBM Journal of Research and Development in 

1959. 

Over the decades, AI techniques have been widely used as a method of improving 

the performance of underlying code. In the last few years with the focus on 

distributed computing models and cheaper compute and storage, there has been an 

increase of interest in AI and machine learning that has led to a huge amount of 

money being invested in start-up software companies. 

Tom M. Mitchell, computer scientist at Carnegie Mellon University, introduced a 

definition of Machine learning as: 

“A computer program is said to learn from experience E with respect to some class 

of tasks T and performance measure P, if its performance at tasks in T, as measured 

by P, improves with experience E.”  

Therefore, in general learning is about improving future performance using past 

experience, reducing as more as possible human intervention or assistance. The 

main three criteria about the machine learning in solving a problem are: 
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- It is possible to recognize a pattern; 

- It isn’t possible to find a way to describe it mathematically; 

- There are data that represents the pattern. 

Machine learning tasks are usually classified in four different wide categories, 

depending on the nature of the problem faced as in Fig 2.1: 

- Supervised learning: through an unknown target function 𝑦 = 𝑓(𝑥) it is 

possible to map the input x to output y.  

- Unsupervised learning: the input given is not labelled and the goal of the 

algorithm is to infer a function to describe hidden structure or pattern in the 

input.  

- Reinforcement Learning: the input and output do not need to be labelled. The 

goal is to find a balance between exploration (of uncharted territory) and 

exploitation (of current knowledge). 

- Deep learning: it can be implemented both as supervised or unsupervised 

technique with the development of neural network. 

 

Figure 2.1 Machine learning categories 



5 

 

 

 

Figure 2.2 Scheme of Machine learning approaches 

The problem faced in this thesis required a supervised learning approach, therefore 

only this branch of machine learning will be discussed. 

2.1.  Supervised learning 

Supervised learning typically begins with an established set of data and a certain 

understanding of how those data are classified. Supervised learning is intended to 

find patterns that can be applied to any analytics process. A dataset must be labelled 

with features that define the meaning of data. 

The goal of supervised learning is to use the inputs to predict the values of the 

outputs. A set of variables might be denoted as inputs and they can be measured or 

pre-set. These have some influence on one or more outputs.  

In the statistical literature the inputs are often called the predictors and more 

classically the independent variables. The outputs are called the responses, or 

classically the dependent variables. 

The aim of supervised machine learning is to build a model that makes predictions 

based on evidence in the presence of uncertainty. A supervised learning algorithm 
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takes a known set of input data and known responses to the data (output) and trains 

a model to generate reasonable predictions for the response to new data. 

There are two types of Supervised Learning techniques: Regression and 

Classification. Classification separates the data, Regression fits the data. 

• Classification is a technique that aims to reproduce class assignments. It can 

predict the response value and the data is separated into “classes”.  

• Regression is a technique that aims to reproduce the output value. 

Regression techniques predict continuous responses. Typical applications 

include electricity load forecasting and algorithmic trading. 

Starting from a set of examples the algorithm is guided to describe a model able to 

predict the correct output. At this point the prediction model must be validated with 

another known dataset independent from the training set. Only when the validation 

phase is satisfactory the algorithm can be considered reliable for use on unknown 

data. 

Components of learning: 

• Input: x 

• Output: y 

• Target function: f:X→Y where X is a set of all inputs and Y set of all outputs. 

The target function is initially unknown. 

• Data: (x1,y1), (x2 ,y2),…,(xn,yn)  

• Hypothesis: g: X→Y is the formula that approximate the target function. It is 

a known function and the goal is g to approximate well the target function f. 

The learning algorithm is the step between the training examples of data and the 

final hypothesis g.  It chooses a formula for the final hypothesis between a set of 

candidate formulas which is called Hypothesis Set H.   

The learning model is formed by the hypothesis set and the learning algorithm. 

The Hypothesis set is composed by a number of sets that can be chosen to be the 

final hypothesis. The final hypothesis will be the function that will approximate in 
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the best way the unknown target function. Therefore, the mathematically definition 

of the hypothesis set is: 

𝐻 = {ℎ}  , 𝑔 ∈ 𝐻 

2.2.  Perceptron  

The perceptron is one of the simplest algorithms for supervised learning, introduced 

by Rosenblatt in 1958. The perceptron can be considered the simplest Artificial 

Neural Network algorithm because it is composed just by one artificial neuron. It 

consists in binary classifications through a threshold function.  

A perceptron takes a vector of real-valued inputs, calculates a linear combination 

of these inputs, then outputs a 1 if the result is greater than some threshold and 0 

otherwise. In figure 2.3 it is possible to see the scheme of a single layer perceptron, 

 

Figure 2.3 Perceptron Scheme 

This function maps its input x to an output value f(x): 

𝑓(𝑥) = {
1 𝑖𝑓 𝑤 ∙ 𝑥 + 𝑏 > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

 

Where w is a vector of real-valued weights that determines the contribution of input 

x to the perceptron output and b is the bias. 

Linear models use the ‘signal’ as a linear sum described below: 
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𝑤𝑇𝑥 = ∑𝑤𝑖𝑥𝑖

𝑑

𝑖=1

 

The number of inputs to the perceptron is d. Learning a perceptron means choosing 

values for the weights. It is possible to have a classification linear system like the 

perceptron that uses the signal and uses the sign of it to make a binary decision. 

ℎ(𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥) 

Regression takes real values and uses them as outputs: 

ℎ(𝑥) = 𝑤𝑇𝑥 

So the simplest algorithm is the linear regression in which it puts the inputs in a 

particular matrix form so it can give the optimal value of the weight vector. 

𝑤 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 

The perceptron algorithm is also termed the single-layer perceptron, to distinguish 

it from a multilayer perceptron, which is a misnomer for a more complicated neural 

network.  

2.3.   Deep learning and Artificial Neural Network  

A neural network attempts to mimic the way a human brain approaches problems 

and uses layers of interconnected units to learn and infer relationships based on 

observed data. A neural network can have several connected layers. When there is 

more than one hidden layer in a neural network, it is sometimes called deep 

learning. Neural network models are able to adjust and learn as data changes. Neural 

networks are often used when data is unlabelled or unstructured. 

The model was created with biological inspiration in order to replicate the human 

ability of learning. The structure of biological neural network are neurons and 

synapsis. Artificial Neural Network retained the biological concept of artificial 

neurons, which receive input, combine the input with their internal state (activation) 

and an optional threshold using an activation function, and produce output using an 

output function  
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Figure 2.4Biological Neuron 

The term ‘neural network’ has its origins in 1943 with McCulloch and Pitts in 

attempts to find mathematical representations of information processing in 

biological systems.  

ANNs began as an attempt to exploit the architecture of the human brain to perform 

tasks with specific algorithms. 

An artificial neural network is composed by nodes. A node, also called a neuron or 

Perceptron, is a computational unit that has one or more weighted input 

connections, a transfer function that combines the inputs in some way, and an output 

connection. 

Nodes are then organized into layers to comprise a network. A single-layer artificial 

neural network, also called a single-layer, has a single layer of nodes, as its name 

suggests. Each node in the single layer connects directly to an input variable and 

contributes to an output variable. 

Neurons are connected to each other in various patterns, to allow the output of some 

neurons to become the input of others. The network forms a directed, weighted 

graph: 
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Figure 2.5 Artificial Neural Network 

 

An Artificial neural network consists in large number of neurons, each of one is a 

single perceptron. It is possible to model each neuron as a function that sum the 

inputs with their weight and add a bias. The output will be based on an activation 

function. 

The activation function is a function which maps the arbitrary output of the logit 

function to any specific range of values. It’s usually used to add some non-linearity 

to our model. This allows the network to combine the inputs in more complex ways 

and in turn provide a richer capability in the functions they can model. The bias 

decides when a neuron stays inactive or in other words, it decided how high the 

weighted sum needs to be for the neuron to be meaningfully active. 

Deep learning is a specific method of machine learning that incorporates neural 

networks in successive layers in order to learn from data in an iterative manner. 

Deep learning is especially useful when trying to learn patterns from unstructured 

data.  
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Deep learning is in other words, a complex neural network that are designed to 

emulate how the human brain works in order to train computers to deal with 

abstractions. 

Deep learning algorithms are improved versions of artificial neural networks 

algorithms. They use multiple layers of artificial neural networks to model the way 

the human brain processes things like light and sound into vision and hearing. In 

general, deep learning algorithms are built off of unsupervised learning run on 

multiple levels of the data. 

They are concerned with building much larger and more complex neural networks 

and, as commented on above, many methods are concerned with very large datasets 

of labelled analogue data, such as image, text. audio, and video. 

The most popular deep learning algorithms are: 

• Convolutional Neural Network (CNN) 

• Recurrent Neural Networks (RNNs) 

• Long Short-Term Memory Networks (LSTMs) 

• Stacked Auto-Encoders 

• Deep Boltzmann Machine (DBM) 

• Deep Belief Networks (DBN) 

Neural networks and deep learning are often used in image recognition, speech, and 

computer vision applications. A neural network consists of three or more layers: an 

input layer, one or many hidden layers, and an output layer as seen in Fig.2.5.  

The dataset is ingested through the input layer. Then the data is modified in the 

hidden layer and the output layers based on the weights applied to these nodes. The 

typical neural network may consist of thousands or even millions of simple 

processing nodes that are densely interconnected. The term deep learning is used 

when there are multiple hidden layers within a neural network. Using an iterative 

approach, a neural network continuously adjusts and makes inferences until a 

specific stopping point is reached. Deep learning is a machine learning technique 
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that uses hierarchical neural networks to learn from a combination of unsupervised 

and supervised algorithms. Deep learning is often called a sub-discipline of 

machine learning. Typically, deep learning learns from unlabelled and unstructured 

data. While deep learning is very similar to a traditional neural network, it will have 

many more hidden layers. The more complex the problem, the more hidden layers 

there will be in the model. 

2.4.  Structure of the network 

The network is a composite function of multiple neurons in the form of layers.  

 

Figure 2.6 Three layer neural network 

A typical neural network consists of 3 types of layers as seen in Fig. 2.6.: 

• The input layer: The given data points are fed into this layer. There can be 

only 1 input layer. The number of neurons in this layer is equal to the number 

of inputs. 

• The hidden layers:  These are the layers which try to find patterns in the 

inputs to get the outputs we need. A network can have any number of hidden 

layers. Nodes of this layer are not exposed to the outer world, they are the 
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part of the abstraction provided by any neural network. Hidden layer 

performs all sort of computation on the features entered through the input 

layer and transfer the result to the output layer. 

• The output layer: It is the last layer of neurons that produces given outputs 

for the program also known as the predictions of the network. The number 

of neurons in this layer is equal to the number of values need to be predicted.  

A traditional artificial neuron is composed of some weighted inputs, a 

transformation function and activation function corresponding to the biological 

neuron’s axon. 

For each activation 𝑎𝑖
(2)

 in the second layer an independent vector of weight  Θ𝑖
(1)

 

is used. Therefore, it is possible to write: 

𝑎𝑖
(2)

= Θ𝑖
(1)

∙ 𝑥 

Where Θ𝑖
(1)

is the row I of the matrixΘ
(1)

 that maps layer 1 to layer 2.  

2.4.1.  Training the network 

It is possible to describe the relationship between the input variables and the output 

variables as a complex mathematical function. For a given model problem, there 

must exist a true mapping function that can properly map input variables to output 

variables. Each neuron of the network has a unique set of weights and biases so it 

is possible to train the network by using a general algorithm that optimize the 

function.  

The training phase is probably the most important one, as the final performances 

depend on the predictive model built. 

The dataset must be as more representative as possible of the task of the program. 

The aim of this phase is trying to build a model able to fit the data provided, that is 

predict the correct output for each input provided as best as possible. 

Training a deep learning neural network model using stochastic gradient descent 

with backpropagation involves choosing a number of components and 
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hyperparameters. An error function must be chosen, often called the objective 

function, cost function, or the loss function. The loss function is used to estimate 

the performance of a model with a specific set of weights on examples from the 

training dataset. 

The Gradient descent algorithm calculates the gradients of the function at a current 

point that is the direction that minimize the function. 

The search or optimization process requires a starting point from which to begin 

model updates. The starting point is defined by the initial model parameters or 

weights. Because the error surface is non-convex, the optimization algorithm is 

sensitive to the initial starting point. As such, small random values are chosen as 

the initial model weights, although different techniques can be used to select the 

scale and distribution of these values. These techniques are referred to as “weight 

initialization”. 

Gradient descent is an optimization algorithm used to find the values of parameters 

(coefficients) of a function (f) that minimizes a cost function (cost).It is best used 

when the parameters cannot be calculated analytically (e.g. using linear algebra) 

and must be searched for by an optimization algorithm. 

 

Figure 2.7 Gradient Loss Algorithm scheme 

Gradient Descent is a very generic optimization algorithm capable of finding 

optimal solutions to a wide range of problems. The general idea of Gradient Descent 

is to tweak parameters iteratively in order to minimize a cost function.  
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An important parameter in Gradient Descent is the size of the steps, determined by 

the learning rate hyperparameter. If the learning rate is too small, then the algorithm 

will have to go through many iterations to converge, which will take a long time. 

 

Figure 2.8 Learning Rate 

Neural networks are trained using stochastic gradient descent and require the choice 

of a loss function when designing and configuring your model. In this thesis the 

mean squared error is used as loss function as it is also the default function 

• Mean Squared Error: 

Mean squared error is calculated as the average of the squared differences 

between the predicted and actual values. The result is always positive regardless 

of the sign of the predicted and actual values and a perfect value is 0.0. The 

squaring means that larger mistakes result in more error than smaller mistakes, 

meaning that the model is punished for making larger mistakes. 

𝑙𝑜𝑠𝑠 =
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖

𝑝)
2

𝑛

𝑖=1

 

2.4.2. Testing the network 

Also known as Validation phase, its aim is to test the performances of the prediction 

model during the training. For this phase it is usually used a particular dataset called 

the test set which is composed by either input and outputs. This set of examples 

should be independent from the testing set. In all the model of this thesis, the 10% 

of the data are used as validation data.  
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During the testing the output are predicted but the algorithm does not use them to 

improve its performances. 

The performances are evaluated comparing the differences between the output of 

the training set examples and the testing results. 

2.4.3. Activation function 

Activation function decides whether a neuron should be activated or not by 

calculating weighted sum and further adding bias with it. The purpose of the 

activation function is to introduce non-linearity into the output of a neuron.  

As seen in Fig. 2.6, the activation function is used for each output giving 

𝑎𝑖
(2)

= 𝜑(θ𝑖0
(1)

𝑥0, θ𝑖1
(1)

𝑥1, θ𝑖2
(1)

𝑥2, θ𝑖3
(1)

𝑥3, θ𝑖4
(1)

𝑥4) 

or, in a compact way: 

𝑎(2) = 𝜑(θ(1) ∙ 𝑥) 

Each activation 𝑎𝑖
(2)

 is then mapped to 𝑎1
(3)

 through a second weight matrix θ(2). In 

other words, it is possible to map the input x directly to the output a1
(3)

 using the 

notation a1
(3)

= ℎΘ(𝑥) where Θ = {θ(1), θ(2)}. 

Neural networks have neurons that work in correspondence of weight, bias and their 

respective activation function. In a neural network, the weights must the updated 

along with the biases of the neurons. The process back-propagation consists in the 

update the weights and bias depending on the error at the output.  

Activation functions make the back-propagation possible since the gradients are 

supplied along with the error to update the weights and biases. 

A neural network without an activation function is essentially just a linear 

regression model. The activation function does the non-linear transformation to the 

input making it capable to learn and perform more complex tasks. 

A neural network is comprised of layers of nodes and learns to map examples of 

inputs to outputs. For a given node, the inputs are multiplied by the weights in a 
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node and summed together. This value is referred to as the summed activation of 

the node. The summed activation is then transformed via an activation function and 

defines the specific output or “activation” of the node. 

Linear function 

The simplest activation function is referred to as the linear activation, where no 

transform is applied at all. A network comprised of only linear activation functions 

is very easy to train but cannot learn complex mapping functions. Linear activation 

functions are still used in the output layer for networks that predict a quantity (e.g. 

regression problems). 

𝑓(𝑥) = 𝑥 

Non-linear functions 

Nonlinear activation functions are preferred as they allow the nodes to learn more 

complex structures in the data. Traditionally, two widely used nonlinear activation 

functions are the sigmoid and hyperbolic tangent activation functions. 

- Sigmoid function: 

It is a non-linear function also called as logistic function. It is usually used 

in output layer of a binary classification, where result is either 0 or 1, as value 

for sigmoid function lies between 0 and 1. The shape of the function for all 

possible inputs is an S-shape from zero up through 0.5 to 1.0. For a long 

time, through the early 1990s, it was the default activation used on neural 

networks. 

𝑓(𝑥) = 𝜎(𝑥) =
1

(1 + 𝑒−𝑥)
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Figure 2.9 Sigmoid Function 

- Tanh function: 

It is also known as Tangent Hyperbolic function, it is non-linear and it is 

generally used in hidden layers of neural network because its values range 

between -1 to 1. In the later 1990s and through the 2000s, the tanh function 

was preferred over the sigmoid activation function as models that used it 

were easier to train and often had better predictive performance. 

𝑓(𝑥) = tanh(𝑥) =
(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)
 

 

Figure 2.10 Tangent Hyperbolic Function 

A general problem with both the sigmoid and tanh functions is that they saturate. 

This means that large values snap to 1.0 and small values snap to -1 or 0 for tanh 

and sigmoid respectively. Further, the functions are only really sensitive to changes 

around their mid-point of their input, such as 0.5 for sigmoid and 0.0 for tanh. 
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The limited sensitivity and saturation of the function happen regardless of whether 

the summed activation from the node provided as input contains useful information 

or not. Once saturated, it becomes challenging for the learning algorithm to 

continue to adapt the weights to improve the performance of the model. 

Layers deep in large networks using these nonlinear activation functions fail to 

receive useful gradient information. Error is back propagated through the network 

and used to update the weights. The amount of error decreases dramatically with 

each additional layer through which it is propagated, given the derivative of the 

chosen activation function. This is called the vanishing gradient problem and 

prevents deep (multi-layered) networks from learning effectively. 

In order to use stochastic gradient descent with backpropagation of errors to train 

deep neural networks, an activation function is needed that looks and acts like a 

linear function, but is, in fact, a nonlinear function allowing complex relationships 

in the data to be learned such as the RELU function. 

- RELU 

The Rectified linear unit is the most used non-linear function in Artificial 

Neural Networks. It is implemented especially in hidden layers because its 

computational cost is lesser then the previous functions. The rectified linear 

activation function is a piecewise linear function that will output the input 

directly if is positive, otherwise, it will output zero. The function is linear for 

values greater than zero, meaning it has a lot of the desirable properties of a 

linear activation function when training a neural network using 

backpropagation. Yet, it is a nonlinear function as negative values are always 

output as zero. 

𝑓(𝑥) = {
0 𝑓𝑜𝑟 𝑥 ≤ 0
𝑥 𝑓𝑜𝑟 𝑥 > 0
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Figure 2.11 RELU Function 

In the last chapter of this thesis, there will be presented differences in terms of train 

and validation loss between the sigmoid and the Relu function. 

2.4.4.  Back propagation algorithm 

Backpropagation refers to a technique from calculus to calculate the derivative (e.g. 

the slope or the gradient) of the model error for specific model parameters, allowing 

model weights to be updated to move down the gradient. As such, the algorithm 

used to train neural networks is also often referred to as simply backpropagation. 

Backpropagation is a short form for "backward propagation of errors." It is a 

standard method of training artificial neural networks. In 1961, the basics concept 

of continuous backpropagation was derived in the context of control theory by J. 

Kelly, Henry Arthur, and E. Bryson. 

This method allows the network to modify the way how the steps are computed 

making possible to adjust the output. In fact, it takes the error associated with a 

wrong guess by a neural network and uses that error to adjust the neural network’s 

parameters in the direction of less error. 

Recalling the general structure of supervised learning, this is done through the 

training data in the training step: knowing the output related to each input is possible 

to evaluate the error with the respect to the output of the network. The 

backpropagation step is the algorithm that allows to change the network trying to 

reduce the computed error. 
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Backpropagation computes the gradient in weight space of a feedforward neural 

network, with respect to a loss function. 

Backpropagation simplifies the network structure by elements weighted links that 

have the least effect on the trained network.  It helps to assess the impact that a 

given input variable has on a network output. The knowledge gained from this 

analysis should be represented in rules. It takes advantage of the chain and power 

rules allows backpropagation to function with any number of outputs.  

General Algorithm 

Given the following term definitions, it is possible to proceed to the explanation of 

the algorithm phases. 

wk
ij= weight for node j in layer lk for incoming node i 

bk
i=bias for node i in layer lk 

ak
i=product sum plus bias (activation) for node i in layer lk 

ok
i=output for node i in layer lk 

rk= number of nodes in layer lk 

g= activation function for the hidden layer nodes 

go= activation function for the output layer nodes. 

The backpropagation algorithm proceeds in the following steps, assuming a suitable 

learning rate α and random initialization of the parameters wij
k: 

1) Forward phase: it consists in the calculation for each input-output 

pair ( 𝑥𝑑⃗⃗ ⃗⃗  ⃗, 𝑦𝑑) of the parameters 𝑦𝑑̂ , 𝑎𝑗
𝑘𝑎𝑛𝑑 𝑜𝑗

𝑘 for each node j in layer k by 

proceeding from layer 0, the input layer, to layer m, the output layer. 

2) Backward phase: for each input-output pair ( 𝑥𝑑⃗⃗ ⃗⃗  ⃗, 𝑦𝑑), it must be calculated 

the results 
𝜕𝐸𝑑

𝜕𝑤𝑗𝑖
𝑘  for each weight 𝑤𝑗𝑖

𝑘 connecting the node 1 in layer k-1 to 

node j by proceeding from layer m, the output layer, to layer 1, the input 

layer. 

- Evaluate the error term for the final layer 𝛿1
𝑚. 
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- Backpropagate the error terms for the hidden layers 𝛿𝑗
𝑘, working 

backwards from the final hidden layer k = m-1. 

- Evaluate the partial derivatives of the individual error Ed with 

respect to wij
k. 

3) Combinations of gradients: for each input-output pair 
𝜕𝐸𝑑

𝜕𝑤𝑗𝑖
𝑘  the gradients 

must be combined to get the total gradient 
𝜕𝐸(𝑋,𝜃)

𝜕𝑤𝑗𝑖
𝑘  for the entire set of input-

output pairs . 

4) Weights updating: according to the learning rate α and total gradient 
𝜕𝐸(𝑋,𝜃)

𝜕𝑤𝑗𝑖
𝑘  

it is possible to update the weights in the neural network. 

There are two types of backpropagation Network: the static and recurrent back-

propagation. The static is one kind of backpropagation network which produces a 

mapping of a static input for static output. It is useful to solve static classification 

issues like optical character recognition. 

Recurrent backpropagation is fed forward until a fixed value is achieved. After that, 

the error is computed and propagated backward. 

The main difference between both of these methods is: that the mapping is rapid in 

static back-propagation while it is non-static in recurrent backpropagation. 

Given a multilayer neural network with activation f, the backpropagation algorithm 

can be summarised in these requirements: 

• The training set 

• The learning rate α 

• The optimization function that defines the error E 

• A termination condition, which can be a maximum number of steps or a 

minimum error reduction rate. 

The Dataset consists in input-output pairs (𝑥𝑖⃗⃗  ⃗, 𝑦𝑖⃗⃗⃗  ) where 𝑥𝑖⃗⃗  ⃗ is the input and 𝑦𝑖⃗⃗⃗   is the 

desired output of the network on input 𝑥𝑖⃗⃗  ⃗. 

The set of input-output pairs of size N is denoted  

𝑋 = {(𝑥1⃗⃗  ⃗, 𝑦1⃗⃗⃗⃗ ), … , (𝑥𝑁⃗⃗ ⃗⃗  , 𝑦𝑁⃗⃗ ⃗⃗  )} 
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𝑋 = {(𝑥1⃗⃗  ⃗, 𝑦1⃗⃗⃗⃗ ), … , (𝑥𝑁⃗⃗ ⃗⃗  , 𝑦𝑁⃗⃗ ⃗⃗  )} 

In backpropagation, the parameters of primary interest are 𝑤𝑖𝑗
𝑘 , the weight between 

node j in layer lk and node i in layer lk-1, and bi
k, the bias for node i in layer lk. There 

are no connections between nodes in the same layer and layers are fully connected. 

An error function, E(X,θ), which defines the error between the desired output 𝑦1⃗⃗⃗⃗  

and the calculated output 𝑦1⃗⃗⃗⃗ ̂ of the neural network on input 𝑥1⃗⃗  ⃗ for a set of input-

output pairs (𝑥𝑖⃗⃗  ⃗, 𝑦𝑖⃗⃗⃗  )∈X and a particular value of the parameters θ. 

The generic approach to minimizing the error is by gradient descent, called back-

propagation in this setting. Because of the compositional form of the model, the 

gradient can be easily derived using the chain rule for differentiation. 

Training a neural network with gradient descent requires the calculation of the 

gradient of the error function E (X, θ) with respect to the weights 𝑤𝑖𝑗
𝑘  and biases bi

k. 

Then, according to the learning rate η, each iteration of gradient descent updates the 

weights and biases (collectively denoted θ) according to 

𝜃𝑡+1 = 𝜃𝑡 − 𝛼
𝜕𝐸(𝑋, 𝜃𝑡)

𝜕𝜃
 

Where 𝜃𝑡 denotes the parameters of the neural network at iteration t in gradient 

descent. 

The derivation of the backpropagation algorithm is fairly straightforward. It follows 

from the use of the chain rule and product rule in differential calculus. Application 

of these rules is dependent on the differentiation of the activation function, one of 

the reasons the heaviside step function is not used (being discontinuous and thus, 

non-differentiable). 

Assuming that the bias bk
i for node I in layer k is incorporated into the weights as 

wk
0i with fixed output of ok-1

0=1 for node 0 in layer k-1. Therefore, 

𝑤0𝑖
𝑘 = 𝑏𝑖

𝑘 

The original formulation is the left part of this equation, while the right is the 

simpler one: 
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𝑎𝑖
𝑘 = 𝑏𝑖

𝑘 + ∑ 𝑤𝑗𝑖
𝑘𝑜𝑗

𝑘−1

𝑟𝑘−1

𝑗=1

= ∑ 𝑤𝑗𝑖
𝑘𝑜𝑗

𝑘−1

𝑟𝑘−1

𝑗=0

 

Backpropagation attempts to minimize the following error function with respect to 

the neural network's weights: 

𝐸(𝑋, 𝜃) =
1

2𝑁
∑(𝑦𝑖̂ − 𝑦𝑖)

2

𝑁

𝑖=1

 

This would be possible by calculating for each weight the value of the error’s 

derivative. 

Since the error function can be decomposed into a sum over individual error terms 

for each individual input-output pair, the derivative can be calculated with respect 

to each input-output pair individually and then combined at the end (since the 

derivative of a sum of functions is the sum of the derivatives of each function): 

𝜕𝐸(𝑋, 𝜃)

𝜕𝑤𝑗𝑖
𝑘 =

1

𝑁
∑

𝜕

𝜕𝑤𝑗𝑖
𝑘

𝑁

𝑑=1

(
1

2
(𝑦𝑖̂ − 𝑦𝑖)

2) =
1

𝑁
∑

𝜕𝐸𝑑

𝜕𝑤𝑗𝑖
𝑘

𝑁

𝑑=1

 

In fact, Thus, for the purposes of derivation, the backpropagation algorithm will 

concern itself with only one input-output pair. Once this is derived, the general form 

for all input-output pairs in X can be generated by combining the individual 

gradients. Thus, the error function in question for derivation is: 

𝐸 =
1

2
(𝑦𝑖̂ − 𝑦𝑖)

2 

The goal is to minimise the error so to study the partial derivative of the error 

function.  

𝜕𝐸

𝜕𝑤𝑗𝑖
𝑘 =

𝜕𝐸

𝜕𝑎𝑗
𝑘

𝜕𝑎𝑗
𝑘

𝜕𝑤𝑗𝑖
𝑘 

where 𝑎𝑗
𝑘k is the activation (product-sum plus bias) of node j in layer k before it is 

passed to the nonlinear activation function (in this case, the sigmoid function) to 

generate the output. This decomposition of the partial derivative basically says that 
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the change in the error function due to a weight is a product of the change in the 

error function E due to the activation 𝑎𝑗
𝑘 times the change in the activation 𝑎𝑗

𝑘  due 

to the weight 𝑤𝑗𝑖
𝑘. 

The definition of error is: 

𝛿𝑗
𝑘 =

𝜕𝐸

𝜕𝑎𝑗
𝑘 

The second term can be calculated by the previous equation so the derivative of the 

error with respect of the weights is: 

𝜕𝐸

𝜕𝑤𝑗𝑖
𝑘 = 𝛿𝑗

𝑘𝑜𝑖
𝑘−1 

Therefore, the partial derivative of a weight is a product of the error term 𝛿𝑗
𝑘 at 

node j in layer k, and the output 𝑜𝑖
𝑘−1of node i in layer k-1. This makes intuitive 

sense since the weight 𝑤𝑗𝑖
𝑘 connects the output of node i in layer k-1 to the input of 

node j in layer k in the computation graph. 

Note that these partial derivatives don’t depend on a particular error function or 

activation function.  

The most common error 𝛿𝑗
𝑘 function is the mean squared error and the calculation 

of the error proceed from the output to the input, that is why this algorithm is called 

back-propagation or backwards propagations of errors. 

The phase in which the neural network calculates the output precedes the backward 

phase for every iteration of gradient descent. In the forward phase, activations 𝑎𝑗
𝑘 

and outputs 𝑜𝑗
𝑘 will be remembered for use in the backwards phase. Once the 

backwards phase is completed and the partial derivatives are known, the 

weights (and associated biases 𝑏𝑗
𝑘 = 𝑤𝑜𝑗

𝑘 ) can be updated by gradient descent. 

This process is repeated until a local minimum is found or convergence criterion is 

met. 

For the final layer, the error is: 
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𝛿1
𝑚 = 𝑔𝑜

′ (𝑎1
𝑚)(𝑦𝑑̂ − 𝑦𝑑) 

For the hidden layers the error is: 

𝛿𝑗
𝑘 = 𝑔′(𝑎𝑗

𝑘) ∑ 𝑤𝑗𝑙
𝑘+1𝛿𝑙

𝑘+1

𝑟𝑘+1

𝑙=1

 

Combining the errors derivatives for each input-output pair it is possible to write 

the formula for updating the weights such as: 

Δ𝑤𝑖𝑗
𝑘 = −α

𝜕𝐸(𝑋, 𝜃)

𝜕𝑤𝑗𝑖
𝑘 = −α

1

𝑁
∑

𝜕𝐸𝑑

𝜕𝑤𝑗𝑖
𝑘

𝑁

𝑑=1
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3. Traction separation law 

Traction separations laws are  specific constitutive laws in the theory of the 

cohesive zone model. 

Cohesive zone models are based on cohesive interactions that approximate 

nonlinear fracture behaviour. These models are used to study stress singularities in 

linear elastic fracture mechanics and to approximate nonlinear material separation 

phenomena. 

 

Figure 3.1 Zoom of the cohesive zone 

The Hillerborg model, also known as Cohesive zone model (Fig. 3.1), assumes that 

the stress displacement behaviour (σ-δ ) observed in the damage zone of a tensile 

specimen is a material property.  

Fracture formation is studied as a gradual phenomenon in which separation of the 

surfaces involved in the crack takes place across an extended crack tip, or cohesive 

zone, and is resisted by cohesive tractions. 

The Cohesive Zone Model does not represent any physical material but describes 

the cohesive forces which occur when material elements are being pulled apart. 

Cohesive interactions are generally a function of displacement separation and 

approximate progressive nonlinear fracture behavior. If the displacement jump is 

greater than a characteristic length (𝛿𝑛), complete failure occurs because it doesn’t 

have more load-bearing capacity. 
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Figure 3.2 (a) shows a schematic stress-displacement curve, and 3.2 (b) illustrates 

the idealization of the damage zone ahead of a growing crack. As the surfaces 

(known as cohesive surfaces) separate, traction first increases until a maximum is 

reached, and then subsequently reduces to zero which results in complete 

separation. 

Cohesive zone model describes also crack nucleation and pervasive cracking 

through various time and length. 

One of the fundamental aspects in cohesive zone modeling is the definition of the 

traction-separation relationship across fracture surfaces, which approximates the 

nonlinear fracture process.  

In general, the initiation and continuation of crack growth depends on several 

factors, such as bulk material properties, body geometry, crack geometry, loading 

distribution, loading rate, load magnitude, environmental conditions, time effects 

(such as viscoelasticity or viscoplasticity), and microstructure. 

There are three different ways of applying a force that can create a crack as shown 

in Fig 3.3: 

● Mode I fracture: It is a opening mode where a tensile stress normal to the 

plane of the crack is applied; 

● Mode II fracture: A in-plane shear stress is applied so It’s considered a 

sliding mode; 

● Mode III fracture: It’s a tearing mode where a shear stress is applied parallel 

to the crack front and also to the plane of the crack ( Out-of-plane shear). 

Figure 3.2 (a) Stress-displacement response and (b) Damage zone ahead a crack. 
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Figure 3.3 Mode I, II, II as different ways to apply a force that lead to a crack 

Three families of traction-separation laws can be identified: 

1. Elastic (reversible) models in which the t-w law derives from a potential 

function and as a consequence cannot correctly describe unloading 

processes. 

2. Elasto-plastic models in which the formulation parallels that of classical 

continuum elastoplasticity , but vectorial relationship between tractions and 

separations are ser instead of stress and strain; since the stiffness of the crack 

just after initiation is nominally infinite, in the limit its behavior should be 

rigid-plastic, and these models are characterized by a very stiff unloading 

response. 

3. Damage-based models obtained by exporting classical continuum damage 

approaches to vectorial, rather than tensorial, relationships, characterized by 

displaying linear unloading to the origin. 

Cohesive traction-separation relationships can be studied as nonpotential-based 

models or potential-based models.  

Nonpotential models are easy to develop because they don’t require symmetry but 

they don’t consider all separation paths. Potential-based models depend on the 

potential function, which is a characteristic of the fracture behavior and it is related 

to the fact that for close processes the work is non-negative. 

The traction is in fact the first derivative of the fracture energy potential  (Ψ) and 

is considered as cohesive interaction over fracture surfaces. The second derivative 

of the energy potential is the constitutive relationship ( material tangent modulus). 
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The main problem with potential-based models is that they display limitations, 

especially for mixed-mode problems, because of the boundary conditions 

associated with cohesive fracture.  

Cohesive traction-separation relationships may be obtained by employing 

theoretical, experimental and computational techniques.  

The hypothesis of the cohesive constitutive laws can be summarized in: 

• The Traction-separation law is independent from any body’s rigid 

motion. 

• The work needed to create a new surface has a finite value of the fracture 

energy Γ0. 

• The mode I fracture energy is different from mode II 

• There is a characteristic length, beyond that there is the failure, so the 

material has no more bearing capacity. 

• Traction in the fracture surface generally decreases to zero, while 

separation increases under conditions softening, which determines a 

negative stiffness. 

• It may exists a potential for cohesive constitutive laws and the energy 

dissipation during the unloading and reloading phases is independent of 

a potential. 

3.1.  Displacement based models 

The traction-separation law (TSL) contains two parameters, the maximum traction 

sustainable by the element T0 , and a maximum opening, the separation δ0, at which 

the element totally fails. 

This law describes the relationship between the actual traction T and the separation 

distance δ as a function T(δ). This function can have different shapes depending on 

the material properties they consider. 
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Figure 3.4 different types of curves such as(a) cubic polynomial function, (b) exponential function and (c) 

trilinear law. 

Beside the two parameters T0 and δ0, a third quantity can be defined, that is the 

energy dissipated by the cohesive element at total failure Γ0. 

It is calculated by the integral of the traction separation law and It is equal to the 

area subtended to the curve. 

Γ0 = ∫ 𝑇(𝛿)𝑑𝛿
𝛿0

0

 

Effective displacements models are used for monotonic function so that fracture 

energy is constant regardless of the fracture mode. They cannot demonstrate the 

differences between positive separations and the negative ones. In fact, when the 

separation is growing, also the cohesive traction increases. 

3.1.1. One-dimensional models 

Tvergaard developed a displacement-based model in which he introduced the 

quantities 𝑇̅, Δ̅ in relation with the normal and tangential component of the tractions 

as: 

𝑇𝑛 =
𝑇̅(Δ̅)

Δ̅

Δ𝑛

𝛿𝑛
,    𝑇𝑡 =

𝑇̅(Δ̅)

Δ̅
𝛼𝑒

Δ𝑡

𝛿𝑡
 

Where 𝛿𝑛 𝑎𝑛𝑑 𝛿𝑡 are respectively the normal ad tangent characteristic lengths in 

relation with the fracture energy;  𝛼𝑒 is a nondimensional constant related with 

mode-mixity. 
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It is possible to describe an effective displacement which is nondimensional in 

relation with Δ𝑛𝑎𝑛𝑑 Δ𝑡,the normal and tangential separations described as 

Δ̅ = √(
Δ𝑛

𝛿𝑛
)
2

+ (
Δ𝑡

𝛿𝑡
)
2

 

Tvergaard used a cubic polynomial function as in Fig. 3.4 (a) for the effective 

traction T̅ that describes the shape of the traction-separation relation. 

𝑇̅(Δ̅)  =
27

4
𝜎𝑚𝑎𝑥  Δ̅(1 − 2Δ̅ + Δ̅2) 

This equation corresponds to the normal cohesive traction proposed by Needleman. 

In mode I, where Δ𝑡 = 0, the normal cohesive traction will be 𝑇𝑛 = 𝑇̅(Δ̅) and for 

mode II in which Δ𝑛 = 0, the tangent component of the traction will be 𝑇𝑡 =

𝛼𝑒𝑇̅(Δ̅). 

In conclusion we can see that the constant 𝛼𝑒 si a scaling factor between the two 

components of the cohesive traction. 

There are other traction-separation relationships based on different kind of 

functions. Tvergaard and Hutchinson develop a trapezoidal function based on 

potential, in which they changed the definition of the 𝛼𝑒 parameter as 

𝛼𝑒 =
𝛿𝑛

𝛿𝑡
 

They defined the potential in relation to the displacement: 

Ψ = 𝛿𝑛 ∫ 𝑇̅(𝛿̅) 𝑑𝛿̅
Δ̅

0

 

The cohesive traction vector is the first derivative of the potential so it is possible 

to express it as: 

𝑇𝑛 =
∂Ψ

∂Δ̅

∂Δ̅

∂Δ𝑛
=

𝑇̅(Δ̅)

Δ̅

Δ𝑛

𝛿𝑛
,    𝑇𝑡 =

∂Ψ

∂Δ̅

∂Δ̅

∂Δ𝑡
=

𝑇̅(Δ)̅̅ ̅

Δ̅

𝛿𝑛

𝛿𝑡

Δ𝑡

𝛿𝑡
 

This will result as follow: 
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∂𝑇𝑛

∂Δ𝑡
=

∂𝑇𝑡

∂Δ𝑛
 

This one dimensional potential leads to a symmetric system with an exact 

differential but it cannot distinguish different fracture energies along the normal 

and tangential directions.  

Rose et al1. developed a one-dimensional energy given as: 

Ψ = 𝛿𝑛 ∫ 𝑒𝜎𝑚𝑎𝑥𝛿̅𝑒𝛿̅ 𝑑𝛿̅ = 𝑒𝜎𝑚𝑎𝑥𝛿𝑛[1 − (1 + Δ̅)𝑒−Δ̅]
Δ̅

0

 

Ortiz and Pandolfi develop another traction-separation relation keeping the same 

definition of 𝛼𝑒 as the Tvergaard and Hutchinson model. They used a linear 

function without an initial slope. 

They defined the cohesive traction vector in relation with the free energy density 

per unit area.  

𝑇𝑛 =
𝑇̃(Δ̃)

Δ̃
Δ𝑛,    𝑇𝑡 =

𝑇̃(Δ̃)

Δ̃
Δ𝑡𝛽𝑒

2 

These two are the components of the Traction vector: 

𝑻 =
𝑇̃(Δ̃)

Δ̃
(Δ𝑛𝐧𝑛 + 𝚫𝑡𝛽𝑒

2) 

Where 𝐧𝑛 is a normal unit vector to a cohesive surface and 𝚫𝑡is the in-plane 

tangential separation vector which is equal to 𝚫𝑡𝐧𝑡where 𝐧𝑡is the tangential unit 

displacement vector. 

They introduced the non-dimensional constant: 𝛽𝑒 =
𝛿𝑛

𝛿𝑡
 

Furthermore, 𝛥̃ is now a dimensional component of 𝛥𝑛𝑎𝑛𝑑 𝛥𝑡and it is related 

to Δ̅ as follow: 

 

1 The model has been used to investigate crack propagation of C-300 steel, functionally graded 

materials, and asphalt concrete. 
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Δ̅ =
Δ̃

𝛿𝑛
 

Ortiz and Pandolfi wrote that the initial elastic slope in the function equation might 

be a severe restriction for time step explicit integration. 

Instead Geubelle and Baylor2 developed a linear function model with the initial 

slope as the linear softening model. They introduced and internal residual strength 

variable called 𝐷𝑠 which is related to the effected displacement as  

𝐷𝑠 = min(𝐷𝑚𝑖𝑛, 𝑚𝑎𝑥(0, 1 − 𝛥̅)) 

The bilinear cohesive model divide traction in the normal and tangential 

components as shown in these two equations: 

𝑇𝑛 = 𝜎𝑚𝑎𝑥
𝐷𝑠

1−𝐷𝑠

𝛥𝑛

𝛿𝑛
, 𝑇𝑡 = 𝜏𝑚𝑎𝑥

𝐷𝑠

1−𝐷𝑠

𝛥𝑡

𝛿𝑡
 

 𝐷𝑚𝑖𝑛 is a critical value that indicates when the cohesive traction reaches the 

cohesive strength. In other words, it is related to the effective displacement because 

if Δ̅ < 1 − 𝐷𝑚𝑖𝑛, then the cohesive traction increases following a line as the 

separation increases too. If  Δ̅ > 1 − 𝐷𝑚𝑖𝑛there is the softening condition in which 

the two components of the Traction are written differently as follow: 

𝑇𝑛 = 𝜎𝑚𝑎𝑥
1−Δ̅

Δ̅

𝛥𝑛

𝛿𝑛
, 𝑇𝑡 = 𝜏𝑚𝑎𝑥

1−Δ̅

Δ̅

𝛥𝑡

𝛿𝑡
 

Where it is possible to substitute 𝛼𝑒 = 𝜏𝑚𝑎𝑥/𝜎𝑚𝑎𝑥 that leads to the equation  

𝑇̅ = 𝜎𝑚𝑎𝑥(1 − Δ̅) 

 

2 They used this model for studying the failure of polycrystalline brittle materials and viscoelastic 

asphalt concrete. 
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3.1.2. Three dimension model 

 

Figure 3.5 local coordinate system (a)two-dimensions and (b) three-dimensions cohesive separations. 

It is possible to extend the previous equations to a 3D problem in which Δ1is an 

opening mode while Δ2and Δ3are two in-plane shear modes. 

So it is possible to define the effective displacement as combination of the three 

dimensions: 

Δ̅ = √(
Δ1

𝛿1
)
2

+ (
Δ2

𝛿2
)
2

+ (
Δ3

𝛿3
)
2

 

Consequently, the traction components will be: 

𝑇1 =
T̅(Δ̅)

Δ̅

𝛥1

𝛿1
 , 𝑇2 =

T̅(Δ̅)

Δ̅
𝛼2

𝛥2

𝛿2
, 𝑇3 =

T̅(Δ̅)

Δ̅
𝛼3

𝛥3

𝛿3
 

Where 𝛼2 𝑎𝑛𝑑 𝛼3 are the constant without dimension associated with the mode-

mixity.  

3.2.  Potential-based models 

Potential-based models have been demonstrated to have less limitations than the 

displacement-based models3 because the potential is function of the two 

components of the separation vector instead of the effective displacement. 

 

3 As shown in ‘Cohesive Zone Models: A Critical Review of Traction-Separation Relationships 

Across Fracture Surfaces’ by Kyoungsoo and Park (2011). 
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The potential can be divided into a normal and tangential part. Each one of its 

components can be derived into their related traction component. Potential-based 

models are valid under the condition of monotonic separation paths. Thus, 

unloading/reloading relations should be addressed independently in order to 

describe energy dissipations, which include fatigue damage. 

Needleman in 1987 developed for the traction separation function a cubic 

polynomial and a linear function to determine the tangential cohesive traction. He 

introduced a polynomial formula for a debonding potential, which is related to just 

the normal and tangential separations (Δn , Δt) along the interface. Then, by deriving 

the potential, the interfacial normal and tangential tractions will be obtained. 

Ψ(Δ𝑛, Δ𝑡) =
27

4
𝜎𝑚𝑎𝑥𝛿𝑛 {

1

2
(
Δ𝑛

𝛿𝑛
)
2

[1 −
4

3
(
Δ𝑛

𝛿𝑛
) +

1

2
(
Δ𝑛

𝛿𝑛
)
2

]

+
1

2
𝛼𝑠 (

Δ𝑡

𝛿𝑛
)
2

[1 − 2 (
Δ𝑛

𝛿𝑛
) + (

Δ𝑛

𝛿𝑛
)
2

]} 

Where 𝛼𝑠is the maximum traction carried by the interface under the mode I fracture 

condition, 𝛿𝑛is the characteristic length and 𝜎𝑚𝑎𝑥 is the shear stiffness parameter. 

It is possible to determine the tractions in the only case when Δ𝑛 < 𝛿𝑛 i.e. when the 

characteristic length is greater than the normal separation. In the other case where 

Δ𝑛 > 𝛿𝑛, there is not cohesive interactions. 

𝑇𝑛 =
𝜕Ψ

𝜕Δ𝑛
=

27

4
𝜎𝑚𝑎𝑥 {(

Δ𝑛

𝛿𝑛
) [1 − 2 (

Δ𝑛

𝛿𝑛
) + (

Δ𝑛

𝛿𝑛
)
2

] + 𝛼𝑠 (
Δ𝑡

𝛿𝑛
)
2

[(
Δ𝑛

𝛿𝑛
) − 1]} 

𝑇𝑡 =
𝜕Ψ

𝜕Δ𝑡
=

27

4
𝜎𝑚𝑎𝑥 {𝛼𝑠 (

Δ𝑡

𝛿𝑛
) [1 − 2 (

Δ𝑛

𝛿𝑛
) + (

Δ𝑛

𝛿𝑛
)
2

]} 

The cohesive strength 𝜎𝑚𝑎𝑥 is reached by Tn when Δ𝑡 = 0 and Δ𝑛 =
𝛿𝑛

3
. 

This traction separation function is associated with the mode I fracture properties 

such as the cohesive strength and the fracture energy because the area under the 

curve when Δ𝑡 = 0 is the same as the fracture energy 𝜙𝑛. 
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Freed and Banks-Sills in 2008 started from Needleman’s potential-based model 

with a cubic polynomial function. Their potential function is related to the mode 

mixity or phase angle (𝜃). The effective displacement and phase angle are: 

Δ̃ = √Δ𝑛
2 + Δ𝑡

2,        𝜃 = tan−1
Δ𝑡

Δ𝑛

 

The potential function is: 

Ψ(Δ̃, θ) =
27

4
t0
∗(θ)Δ̃ [

1

4
(

Δ̃

δc
∗(θ)

)

3

−
2

3
(

Δ̃

δc
∗(θ)

)

2

+
1

2
(

Δ̃

δc
∗(θ)

)] 

In this equation t0
∗  depends on the maximum cohesive strength and the phase angle 

as follow: 

t0
∗(𝜃) = 𝜎𝑚𝑎𝑥√1 + 𝑡𝑎𝑛2 𝜃 

δ𝑐
∗  depends also to the characteristic length: 

δ𝑐
∗(𝜃) = 𝛿𝑛√1 + tan2 𝜃 

The last two definitions have meaning in the only case when Δ̃ < δ𝑐
∗(𝜃) because if 

the effective displacement is greater than δ𝑐
∗(𝜃), then the cohesive tractions will be 

zero. It is also possible to write this potential equation in terms of normal and 

tangential separations. 

In this way in mode I case, when the tangential separation is equal to zero, this 

potential is identical to the one from Needleman and in both their functions the 

tangential separations are quadratic. 

The two tractions components will be derived not in term of effective displacement 

but regarding the separation components as follow, considering the case when Δ̃ <

δ𝑐
∗(𝜃): 

𝑇𝑛 =
𝜕Ψ

𝜕Δ𝑛
=

27

4
𝜎𝑚𝑎𝑥 {(

Δ𝑛

𝛿𝑛
) [(

Δ𝑛

𝛿𝑛
)
2

− 2(
Δ𝑛

𝛿𝑛
) + 1] +

1

2
(
Δ𝑡

𝛿𝑛
)
2

[(
Δ𝑛

𝛿𝑛
) −

4

3
]} 

𝑇𝑡 =
𝜕Ψ

𝜕Δ𝑡
=

27

4
𝜎𝑚𝑎𝑥 {(2

Δ𝑡

𝛿𝑛
) [

1

4
(
Δ𝑛

𝛿𝑛
)
2

−
2

3
(
Δ𝑛

𝛿𝑛
) +

1

2
]} 
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Like Needleman’s model, this one uses the cubic polynomials for the normal 

traction function and the tangential cohesive traction is linear. 

There are other three models that are based on the concept of the universal binding 

energy developed by Rose et al.  

They studied an atomistic potential that connects metallic binding energies and 

lattice parameters. The potential, called the universal binding energy, is defined as: 

Ψ = −(1 + 𝑙) exp(−𝑙) 

Note that this function is an exponential and l is the scaled separation. 

After this definition, Rice and Wang obtained a new relationship for traction 

separation law for large tangential separation. Again, the Traction is derived from 

the potential in which E0 is the initial modulus or one-dimensional tensile straining 

of the interface layer: 

𝑇𝑛(Δ𝑛) = 𝐸0 (
Δ𝑛

𝛿𝑛
) 𝑎𝑥𝑝 (−𝛼𝑛

Δ𝑛

𝛿𝑛
) 

Needleman developed another potential based on the universal binding energy 

maintaining the linear relationship for shear interaction as in his previous model. 

Ψ(Δ𝑛, Δ𝑡) =
9

16
𝜎𝑚𝑎𝑥𝛿𝑛 {1 − [1 + 𝑧 (

Δ𝑛

𝛿𝑛
) −

1

2
𝛼𝑠 (𝑧

Δ𝑡

𝛿𝑛
)
2

] exp (−
zΔ𝑛

𝛿𝑛
)} 

In fact, it is possible to obtain the tangential traction by deriving this potential and 

see that the traction is linear with respect to the tangential separation. 

Then Needleman created an exponential-periodic potential, which is function of 

normal and tangential separations. The exponential-periodic potential is 

Ψ(Δ𝑛, Δ𝑡) =
𝜎𝑚𝑎𝑥𝑒𝛿𝑛

𝑧
{1 − [1 + (

𝑧Δ𝑛

𝛿𝑛
) − 𝛽𝑠𝑧

2 [1 − cos (
2𝜋Δ𝑡

𝛿𝑡
)]] exp (−

zΔ𝑛

𝛿𝑛
)} 

Where z=16e/9 and 𝛽𝑠 is a constant. The normal and tangential tractions are given 

by: 

𝑇𝑛 =
𝜕Ψ

𝜕Δ𝑛
= 𝑒𝜎𝑚𝑎𝑥 {(

𝑧Δ𝑛

𝛿𝑛
) − 𝛽𝑠𝑧

2 [1 − cos (
2𝜋Δ𝑡

𝛿𝑡
)]} exp (−

zΔ𝑛

𝛿𝑛
) 
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𝑇𝑡 =
𝜕Ψ

𝜕Δ𝑡
= 𝑒𝜎𝑚𝑎𝑥 {2𝜋𝛽𝑠𝑧 (

𝛿𝑛

𝛿𝑡
) sin (

2𝜋𝛥𝑡

𝛿𝑡
)} exp (−

zΔ𝑛

𝛿𝑛
) 

In the condition where Δ𝑡 = 0 and Δ𝑛 =
𝛿𝑛

𝑧
 the normal cohesive strength 𝜎𝑚𝑎𝑥 is 

reached. The normal traction has an exponential softening behavior, while the 

tangential traction illustrates periodic behavior. There fracture properties are valid 

just for mode I parameters like the fracture energy and the cohesive strength. This 

model based on exponential-periodic potential, doesn’t comprehend the mode II so 

it is unable to describe general model based on mixed-mode fracture behaviours. 

The generalization of this model was developed by Beltz and Rice who described 

the normal traction as an exponential function and the tangential traction was 

demonstrated by Peierls as a periodic function. 

𝑇𝑛 = [𝐵(Δ𝑡)Δ𝑛 − 𝐶(Δ𝑡)] exp (
−Δ𝑛

𝛿𝑛
) 

𝑇𝑡 = 𝐴(Δ𝑛) sin (
2𝜋Δ𝑡

𝛿𝑡
) 

Where 𝐴(Δ𝑛), 𝐵(Δ𝑡) and 𝐶(Δ𝑡) are function that satisfy the following boundary 

conditions. 

There are two main notes about this model: 

First of all the potential is an exact differential and second, the constant C (0) is 

equal to zero because the normal traction is zero when the two components of the 

displacements are zero.  

So, in this case we have: 

𝐶(0) = 0  

The area under a cohesive interaction represents the fracture energy so the normal 

traction of a cleavage fracture depends on the surface energy 𝛾𝑠 and the tangential 

traction of a dislocation nucleation procedure is associated to the unstable stacking 

energy 𝛾𝑢𝑠 as follow: 
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2𝛾𝑠 = ∫ 𝑇𝑛(Δ𝑛, 0)𝑑Δ𝑛

∞

0

= 𝜙𝑛 

𝛾𝑢𝑠 = ∫ 𝑇𝑡(0, Δ𝑡)𝑑Δ𝑡 =

𝛿𝑡
2

0

𝜙𝑡 

The two traction components satisfy the boundary condition when Δ𝑛 = ∞ that 

corresponds to the complete normal separation. This is why fracture surfaces cannot 

transfer tractions when there is complete separation along the normal direction. 

In other words, 

𝑇𝑛(∞, Δ𝑡) = 0  and 𝑇𝑡(∞, Δ𝑡) = 0 

The generalized exponential-periodic potential of Beltz and Rice is: 

Ψ = 2𝛾𝑠 + 2𝛾𝑠 exp (
−Δ𝑛

𝛿𝑛
) {[𝑞 + (

𝑞 − 𝑟

1 − 𝑟
)
Δ𝑛

𝛿𝑛
] sin2 (

𝜋Δ𝑡

𝛿𝑡
) − [1 +

Δ𝑛

𝛿𝑛
]} 

Having the fracture energy and the cohesive strengths, it is possible to obtain the 

characteristic length parameters as follows: 

𝛿𝑛 =
𝜙𝑛

𝑒𝜎𝑚𝑎𝑥
 

𝛿𝑡 =
𝜋𝜙𝑡

𝜏𝑚𝑎𝑥
 

Another potential-based model was introduced by Xu and Needleman by changing 

the periodic function for tangential traction to an exponential expression. This is 

useful to characterize the interfacial shear failure. This model is called the 

exponential-exponential potential and it is shown as: 

Ψ(Δ𝑛, Δ𝑡) = 𝜙𝑛

+ 𝜙𝑛 exp (−
Δ𝑛

𝛿𝑛
) {[1 − 𝑟 + (

Δ𝑛

𝛿𝑛
)]

1 − 𝑞

𝑟 − 1

− [𝑞 +
𝑟 − 𝑞

𝑟 − 1

Δ𝑛

𝛿𝑛
] exp (−

Δ𝑡
2

𝛿𝑡
2)} 

The interfacial cohesive tractions as the potential’s derivative are: 
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𝑇𝑛 =
𝜙𝑛

𝛿𝑛
exp (−

Δ𝑛

𝛿𝑛
) {

Δ𝑛

𝛿𝑛
exp(−

Δ𝑡
2

𝛿𝑡
2) +

1 − 𝑞

𝑟 − 1
[1 − exp (−

Δ𝑡
2

𝛿𝑡
2)] [𝑟 −

Δ𝑛

𝛿𝑛
]} 

𝑇𝑡 =
𝜙𝑛

𝛿𝑛

2𝛿𝑛

𝛿𝑡
 
Δ𝑡

𝛿𝑡
[𝑞 +

𝑟 − 𝑞

𝑟 − 1

Δ𝑛

𝛿𝑛
] exp (−

Δ𝑛

𝛿𝑛
) exp(−

Δ𝑡
2

𝛿𝑡
2) 

Once again, as the previous model, it is possible to relate the fracture energies to 

the cohesive strength: 

𝜙𝑛 = 𝜎𝑚𝑎𝑥𝑒𝛿𝑛 

𝜙𝑡 = √𝑒/2𝛿𝑡𝜏𝑚𝑎𝑥 

Where: 

q is a constant and it is the ratio of the mode II fracture energy 𝜙𝑡 to the mode I 

fracture energy𝜙𝑛, i.e., 

𝑞 =
𝜙𝑡

𝜙𝑛
 

r is another nondimensional constant that depends on Δ𝑛
∗  which is the value of the 

normal separation when the normal traction is equal to zero. 

𝑟 =
Δ𝑛

∗

𝛿𝑛
 

The condition when q=1 is reached when both the fracture energy of mode I and II 

are the same. In this case the effect of the r parameter disappears and the potential 

is simplified as 

Ψ(Δ𝑛, Δ𝑡) = 𝜙𝑛 − 𝜙𝑛 [1 + (
Δ𝑛

𝛿𝑛
)] exp (−

Δn

δn
) exp (−

Δt
2

δt
2) 

 

The normal and tangential tractions not only demonstrate the exponentially 

decreasing softening but represent the different fracture parameters in mode I and 

II. 

This exponential-exponential model has several limitations due to the introduction 

of parameters that are difficult to calculate as explained: 
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- The model contains this fracture parameter Δ𝑛
∗    that is difficult to obtain 

experimentally. In some cases, it is not a problem because it can disappear 

when q=1. 

- This model in fact cannot be applied if fracture energy related to mode I is 

different to mode II fracture energy. 

- It cannot control the elastic behaviour so it is difficult to do numerical 

simulations of cohesive surface elements. 

The model doesn’t correspond to reality when it reaches the final crack opening 

width because it would be infinite due to the exponential function. 

PPR, General Unified Potential-Based Model 

This general model was introduced to bypass the limitations of the exponential-

exponential model so it is formulated with physical parameters and boundary 

conditions. 

The parameters used are: 

- Fracture energy 

- Cohesive strength 

- Shape 

- Initial slope. 

The boundary conditions that need to be satisfied by the potential-based model are 

as follow: 

- Complete normal failure when𝑇𝑛(𝛿𝑛, Δ𝑡) = 0 or 𝑇𝑛(Δ𝑛, 𝛿𝑡̅) = 0 

- Complete tangential failure when 𝑇𝑡(Δ𝑛, 𝛿𝑡) = 0 or 𝑇𝑡(𝛿𝑛
̅̅ ̅, Δ𝑡) = 0 

- Mode I fracture energy  ∫ 𝑇𝑛(Δ𝑛, 0)𝑑Δ𝑛
𝛿𝑛

0
= 𝜙𝑛 

- Mode II fracture energy  ∫ 𝑇𝑡(0, Δ𝑡)𝑑Δ𝑡 =
𝛿𝑡

0
𝜙𝑡 

- Normal cohesive strength 𝑇𝑛(𝛿𝑛𝑐, 0) = 𝜎𝑚𝑎𝑥 where 
𝜕𝑇𝑛

𝜕Δ𝑛
|Δ𝑛=𝛿𝑛𝑐

= 0 

- Tangential cohesive strength 𝑇𝑡(0, 𝛿𝑡𝑐) = 𝜏𝑚𝑎𝑥 where 
𝜕𝑇𝑡

𝜕Δ𝑡
|Δ𝑡=𝛿𝑡𝑐

= 0 
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As introduced above, in this model two shape parameters characterize various 

material softening responses. The potential of the PPR model defined as potential 

of mixed-mode cohesive fracture can be written as: 

Ψ(Δ𝑛, Δ𝑡) = min(𝜙𝑛, 𝜙𝑡)

+ [Γ𝑛 (1 −
Δ𝑛

𝛿𝑛
)
𝛼

(
𝑚

𝛼
+

Δ𝑛

𝛿𝑛
)
𝑚

+ 〈𝜙𝑛 − 𝜙𝑡〉] 𝑋 [Γ𝑛 (1 −
|Δ𝑡|

𝛿𝑡
)

𝛽

(
𝑛

𝛽
+

|Δ𝑡|

𝛿𝑡
)
𝑛

+ 〈𝜙𝑛 − 𝜙𝑡〉] 

Where 〈. 〉 is the Macaulary bracket defined as: 

〈𝑥〉 = {
0, (𝑥 < 0) 
𝑥, (𝑥 ≥ 0) 

 

The traction vector is obtained by deriving the potential. The potential’s gradient 

is: 

Tn(Δ𝑛, Δ𝑡) =
Γ𝑛

𝛿𝑛
[𝑚 (1 −

Δ𝑛

𝛿𝑛
)
𝛼

(
𝑚

𝛼
+

Δ𝑛

𝛿𝑛
)
𝑚−1

− 𝛼 (1 −
Δ𝑛

𝛿𝑛
)
𝛼−1

(
𝑚

𝛼
+

Δ𝑛

𝛿𝑛
)
𝑚

] 𝑋 [Γ𝑡 (1 −
|Δ𝑡|

𝛿𝑡
)

𝛽

(
𝑛

𝛽
+

|Δ𝑡|

𝛿𝑡
)
𝑛

+ 〈𝜙𝑛 − 𝜙𝑡〉] 

Tt(Δ𝑛, Δ𝑡) =
Γ𝑡

𝛿𝑡
[𝑛 (1 −

|Δ𝑡|

𝛿𝑡
)
𝛽

(
𝑛

𝛽
+

|Δ𝑡|

𝛿𝑡
)

𝑛−1

− 𝛽 (1 −
|Δ𝑡|

𝛿𝑡
)
𝛽−1

(
𝑛

𝛽
+

|Δ𝑡|

𝛿𝑡
)

𝛽−1

] 𝑋 [Γ𝑛 (1 −
Δ𝑛

𝛿𝑛
)
𝛼

(
𝑚

𝛼
+

Δ𝑛

𝛿𝑛
)
𝑚

+ 〈𝜙𝑛 − 𝜙𝑡〉]
Δ𝑡

|Δ𝑡|
 

The normal and tangential tractions are defined within the cohesive interaction 

(softening) region where the fracture surface transfers cohesive normal and 

tangential tractions. All the characteristic parameters are the results of the boundary 

conditions.  
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The normal and tangential final crack opening widths (𝛿𝑛, 𝛿𝑡) are the characteristic 

lengths and they are written as: 

𝛿𝑛 =
𝜙𝑛

𝜎𝑚𝑎𝑥
𝛼𝜆𝑛(1 − 𝜆𝑛)

𝛼−1 (
𝛼

𝑚
+ 1) (

𝛼

𝑚
𝜆𝑛 + 1)

𝑚−1

 

𝛿𝑡 =
𝜙𝑡

𝜏𝑚𝑎𝑥
𝛽𝜆𝑡(1 − 𝜆𝑡)

𝛽−1 (
𝛽

𝑛
+ 1) (

𝛽

𝑛
𝜆𝑡 + 1)

𝑛−1

 

The two energy, related to mode I and II are constants and when they are not equal 

they result as: 

Γ𝑛 = (−𝜙𝑛)
〈𝜙𝑛−𝜙𝑡〉
𝜙𝑛−𝜙𝑡 (

𝛼

𝑚
)
𝑚

  

Γ𝑡 = (−𝜙𝑡)
〈𝜙𝑡−𝜙𝑛〉
𝜙𝑡−𝜙𝑛 (

𝛽

𝑛
)
𝑛

 

Geometrically 𝜆𝑡 and 𝜆𝑛are the initial slope indicators and they are calculated as 

the ratio between the critical crack opening width and the final crack opening width. 

𝛼 𝑎𝑛𝑑 𝛽 are the shape parameters that provide choice when finding the right 

softening shape. 

The constant exponents m and n are respectively: 

𝑚 =
𝛼(𝛼 − 1)𝜆𝑛

2

(1 − 𝛼𝜆𝑛
2)

 𝑎𝑛𝑑 𝑛 =
𝛽(𝛽 − 1)𝜆𝑡

2

(1 − 𝛽𝜆𝑡
2)
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4. Granular material properties 

Many geological materials, such as shale, mudstone, carbonate rock, limestone and 

rock salt are multi-porosity porous media in which pores of different scales may co-

exist in the host matrix. When fractures propagate in these multi-porosity materials, 

these pores may enlarge and coalesce and therefore change the magnitude and the 

principal directions of the effective permeability tensors.  

Soils are granular materials so their behaviour is determined by the forces between 

particles. These includes forces due to boundary loads (transmitted through the 

skeleton), particle forces such as gravitational and contact level forces such as 

capillarity. 

Their static and dynamic behaviors are very complicated due to the complex 

interactions between particle and particle, particle and the liquid.  

It is possible to understand the problem starting from a particle-scale because the 

granular material is discrete in nature rather than continuous. 

Granular materials consist of grains in contact and surrounding voids. The 

micromechanical behaviour of granular materials is therefore inherently 

discontinuous and heterogeneous. In order to understand the mechanical behaviour 

of granular material from a microscopic point of view, it is important to understand 

the spatial distribution and orientation of grains and their contact conditions. 

To really understand the mechanics of granular materials, particular interest goes to 

the particle rotation, contact moments as well as interparticle forces and contact 

displacement. 

The intrinsic complexity of these materials can be divided into two different types 

of properties. Macroscopically, tensorial variables (stress tensor, strain tensor, 

fabric tensor) are commonly used based on Representative Volume Element (RVE), 

while vectors variables (contact force, contact displacement, contact normal) are 

adopted at particle-scale. 
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A tensor, called Fabric tensor, is introduced to characterize, in a tensor form, the 

spatial distribution of microscopic quantities such as particle orientation, contact 

normal and it can be used to derive constitutive equations. 

4.1. Representative Volume Element 

 

Figure 4.1 Representative volume element for granular material 

Representative Volume Element (RVE) is a statistical representation of typical 

material properties. 

RVE is defined by the representation of the material to be used to determine the 

corresponding effective properties for the homogenised macroscopic model with a 

size which is small enough compared to the macroscopic body and large enough 

compared to the microstructural size. An RVE should contain sufficient information 

about the microstructure and be a good representation of a continuum. 

A typical RVE is composed by particles and voids among them. Three basics 

conditions are essential: 

- RVE must be microscopically large enough, containing a sufficient number 

of particles and voids in order to get as many microscopic quantities as 

possible. 

- It should be macroscopically small enough to be considered a spatial point. 

- The characteristic length does not change over time and space. 
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The choice of the RVE or its modelling determines the first difference between 

various homogenization theories. In particular, two classes of homogenization 

processes can be distinguished: 

1. Homogenization methods for periodic media: The basic hypothesis in this 

case is that the medium may be described by a periodic number. The RVE 

is, in this case, the unit cell. With this approach, the treatment is completely 

deterministic. These models can account for precise local information such 

as the shape and orientations of inclusions. 

2. Homogenization methods for media with randomly distributed phases: in 

this case it is not possible to give a deterministic description of the 

microstructure, so a statistical and probabilistic treatment becomes 

appropriate. 

Considering a constitutive law t (δ,q) that predicts the traction vector t based on the 

history of the displacement jump δ over a cohesive-frictional surface with the 

normal direction vector being n. 

The internal variables in q, if the cohesive surface is composed of a thin layer of 

granular materials, can be chosen among a large set of geometrical measures on 

micro-structural attributes such as porosity, coordination number and fabric tensor. 

4.2. Microstructure Characterization 

 

Figure 4.2 RVE and coordination number 
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Coordination number 

The coordination number is defined as the number of active contacts for each 

particle, where the normal contact force needs to be larger than zero. Taking the 

particle O0 in the middle of a representative volume element in Fig. 4.2 for an 

example, six contacts including c1, c2, c3, c4, c5 and c6 can be found, which means 

its coordination number is 6.  

For granular materials consisting of numerous particles, the averaged coordination 

number is usually adopted to characterize their connectivity and expressed as 

𝐶𝑛 =
𝑁𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
 

Where 𝑁𝑐 is the number of particle contacts and 𝑁𝑏 is the number of the particles 

in the RVE. The coordination number is greater than zero. 

4.3. Macroscopic Characterization 

Porosity 

Porosity Ф is a fraction of the total soil volume that is taken up by the pore space.  

It is the ratio between the void and the total volume of a representative element 

(RVE) of the material layer. 

Ф =
𝑉𝑣𝑜𝑖𝑑

𝑉𝑡𝑜𝑡𝑎𝑙
 

Therefore, it is a single-value quantification of the amount of space available to 

fluid within a specific body of soil. It can range between 0 and 1, typically for soils 

is 0.3-0.7. 

Fabric tensor 

The fabric is a tensorial quantity which is used to characterize the internal structure 

of an assembly of grains. For a single particle its definition can be written as4: 

 

4 Stake (1982) defined fabric tensor for disc or spherical assemblies.  
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𝐴𝑓 =
1

𝑁𝑐𝑜𝑛𝑡𝑎𝑐𝑡
∑ 𝑛𝑐 ⊗ 𝑛𝑐

𝑁𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑐=1

 

Where 𝑛𝑐 is the contact normal unit vector of a particle contact c, c=1, 2,…, Ncontact 

in the RVE that is pointing outwards in the direction of the contact as c1O1 in Fig. 

4.2.  

Chantawarangul (1993) indicated that the fabric tensor can also be represented by 

appropriate distribution density function of contact normal: 

𝐴𝑓 = ∫ 𝐸(Ω) 𝑛𝑖
𝑐𝑛𝑗

𝑐 𝑑Ω
Ω

 

Where 𝐸(Ω) =
(1+𝑎𝑖𝑗

𝑟 𝑛𝑖
𝑐𝑛𝑗

𝑐)

4 𝜋
  with 𝑎𝑖𝑗

𝑟 = 𝑎𝑗𝑖
𝑟  , 𝑖 ≠ 𝑗. 

The principal values of tensors 𝑎𝑖𝑗
𝑟   namely 𝑎1

𝑟 , 𝑎2
𝑟 𝑎𝑛𝑑 𝑎3

𝑟  are called coefficients of 

principal contact normal anisotropy or coefficients of contact anisotropy for brevity. 

These coefficients are related to the density of contact normal in principal contact 

directions. For an isotropic distribution of contacts, coefficients of contact 

anisotropy are zero and 𝐸(Ω) =
1

4 𝜋
. A positive coefficient term implies a contact 

density in the corresponding principal direction which is greater than that expected 

of an isotropic assembly. Conversely,  𝑎𝑖
𝑟 < 0 implies that contact density is 

reduced below the density associated with an isotropic sample. The degree of fabric 

anisotropy can be represented by the second invariant 𝑎𝑑
𝑟   written as: 

𝑎𝑑
𝑟 = √

3𝑎𝑖𝑗
𝑟 𝑎𝑖𝑗

𝑟

2
 

The strong fabric tensor is: 

𝐴𝑠𝑓 =
1

𝑁𝑠𝑡𝑟𝑜𝑛𝑔𝑐𝑜𝑛𝑡𝑎𝑐𝑡
∑ 𝑛𝑐 ⊗ 𝑛𝑐

𝑁𝑠𝑡𝑟𝑜𝑛𝑔𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑐=1
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Where 𝑛𝑐 is the normal unit vector of a strong particle contact (having a 

compressive normal force greater than mean contact force) c, c=1,2,…, Ncontact in 

the RVE.  

Contact force and stress 

Deformation of granular materials is accompanied by significant changes in the 

magnitudes of contact forces. The inter-particle forces can be decomposed into the 

direction normal and tangent to the contact planes, namely normal contact force 

𝑓𝑛
𝑐 and tangential contact force 𝑓𝑡

𝑐, as shown in Fig. 4.2. 

The normal contact force and tangential contact force can be expressed as: 

𝐹𝑖𝑗
𝑛 =

1

4𝜋
∫ 𝑓𝑛̅̅̅̅
Ω

(Ω)𝑛𝑖𝑛𝑗𝑑Ω , 𝐹𝑖𝑗
𝑡 =

1

4𝜋
∫ 𝑓𝑖

𝑡̅̅ ̅
Ω

(Ω)𝑛 𝑛𝑗𝑑Ω   

Where 𝑓𝑛̅̅̅̅  and 𝑓𝑖
𝑡̅̅ ̅ are the density distribution function defined as: 

𝑓𝑛̅̅̅̅ (Ω) = 𝑓0
𝑛̅̅̅̅ (1 + 𝑎𝑖𝑗

𝑛 𝑛𝑖𝑛𝑗)        𝑓𝑖
𝑡̅̅ ̅(Ω) = 𝑓0

𝑛̅̅̅̅ [𝑎𝑖𝑗
𝑡 𝑛𝑗 − (𝑎𝑘𝑙

𝑡 𝑛𝑘𝑛𝑙)] 

Starting from the contact force definition, it is possible to express the stress tensor 

as: 

𝜎𝑖𝑗 =
1

𝑉
∑𝑓𝑗

𝑐𝑙𝑖
𝑐

𝑁𝑐

𝑐=1

 

Contact displacement and strain 

The contact displacements are generally characterized in terms of the translations 

of the particle centres, and the rigid-body rotations of the grains around their centre. 

It is possible to have displacement from macro-deformations of the RVE model in 

DEM simulations. 
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5. Data Generation 

5.1. Discrete Element Method 

The dataset used to develop the neural network was generated by a DEM 

simulation. The discrete element method proposed by Cundall and Strack (1979), 

also known as DEM is a very powerful numerical tool to simulate soils and other 

granular materials. The DEM modeling involves specifying the equations of motion 

for a system of discrete bodies and solving the resulting equations.  

The mechanical response of granular materials in DEM is governed by the contacts 

between constitutive particles and between particles and the boundaries. So that the 

physical quantities that control these interactions (particle rotations, contact 

orientations, contact forces etc.) can easily be measured, which is almost impossible 

to capture in a laboratory test. 

The DEM model gives a look at what is inside of the material and is capable to 

understand the fundamental particle interactions underlying the complex, macro-

scale response. the DEM tries to solve large-displacement problems in 

geomechanics that are These problems cannot easily be modeled using more 

widespread continuum approaches such as the finite element method (FEM). 

 

Figure 5.1 Scheme of an RVE 

Two particles might establish a new interaction, which consists in: 
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1. Detecting collision between particles; 

2. Creating new interaction and determining its properties (such as stiffness); 

they are either precomputed or derived from properties of both particles. 

Then for already existing interactions, the following steps are: 

• Strain evaluation; 

• Stress computation based on strains; 

• Force application to particles in interaction. 

The DEM software YADE5 is an open-source software, which is developed based 

on the C++ & Python programming languages. The calculation method is similar 

to the one proposed by Cundall and Strack (1979). 

The contact laws governing the interactions between the particles are defined by 

the parameters illustrated in Figure 5.2. 

 

Figure 5.2 Contact laws governing the interactions by Cundall and Strack (1979) 

The main parameters are the normal stiffness coefficient 𝑘𝑛 (normal direction to 

the contact plane), the tangential stiffness coefficient 𝑘𝑡 (tangent direction to the 

contact plane) and the microscopic friction angle 𝜑𝑐. No tensile force is 

contemplated. 

The inter-particle contact behaviour is governed by an elastic force-displacement 

relation in the normal contact direction as: 

Δ𝐹𝑛 = 𝑘𝑛Δ𝛿𝑐 𝑎𝑛𝑑 𝐹𝑛 ≥ 0 

 

5 YADE is the abbreviation of “Yet Another Dynamic Engine” by Šmilauer et al. (2010) 
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Where 𝛿𝑐 is the penetration depth between two particles in contact. The tangent 

force instead is calculated at each time step like: 

Δ𝐹𝑡 = 𝑘𝑡Δ𝑢𝑡 𝑎𝑛𝑑 |𝐹𝑡| ≤ 𝐹𝑛 tan𝜑𝑐 

For every time step, the tangential component of contact force must be corrected 

such that it does not exceed the shear strength of the contact. Then the resultant 

force and moment applied are updated with the two components of the contact 

force. 

The phases of the DEM simulation are in loop as the following steps: 

1. Update list of contacts 

2. Calculate contact force 

3. Calculate force and moments applying on each particle 

4. Calculate the acceleration of each particle 

5. Update the velocity and position of particles. 

The numerical techniques used in DEM can be divided into two categories as soft 

sphere (molecular dynamics) and hard sphere (event driven) approaches. As in 

figure 5.3, the soft sphere model in which the particle is considered “soft”, allows 

the penetration between particles because it considers the deformation at the contact 

point.  

 

Figure 5.3 Model of the soft sphere 

 

Figure 5.4 Model of the hard sphere 



54 

 

 

The principle behind the soft sphere method is to solve the equations governing the 

linear and angular dynamic equilibrium of contacting particles for every time step. 

In fact, the word soft may cause some misunderstanding; in the simulation, soft 

particles are actually rigid, however they are allowed to have overlap at the contact 

points. Consequently, physical actions are realized only when spheres enter each 

other. 

In the YADE code, the soft sphere model is adopted so particle contact is allowed 

as seen in Fig. 5.5. When the model involves disk or sphere particles such as p and 

q, the contact overlap is calculated for a 3D model as: 

𝛿𝑐 = 𝑅𝑝 + 𝑅𝑞 − √(𝑥𝑝 − 𝑥𝑞)
2
+ (𝑦𝑝 − 𝑦𝑞)

2
+ (𝑧𝑝 − 𝑧𝑞)

2
 

Where R is the radius of the single particle and x, y, z are the centroidal coordinates 

for each sphere. 

 

Figure 5.5 Overlap between p and q sphere 

At the end, if the quantity 𝛿𝑐 is positive the force transmitted will be a compression, 

otherwise the contact will be classified as inactive. 

Creating interaction between particles 
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The exact collision detection depends on the geometry of individual particles but in 

Yade terminology, the Collider creates only potential interactions. 

It is possible to refer to kinematic variables of the contacts as ‘strains’, although at 

this scale it is also common to speak of ‘displacements’. 

Basic DEM interaction defines two stiffnesses: normal stiffness KN and shear 

(tangent) stiffness KT. It is desirable that KN be related to fictitious Young’s 

modulus of the particles’ material, while KT is typically determined as a given 

fraction of computed KN. The 
𝐾𝑇

𝐾𝑁
 ratio determines macroscopic Poisson’s ratio of 

the arrangement, which can be shown by dimensional analysis: elastic continuum 

has two parameters (E and ν) and basic DEM model also has 2 parameters with the 

same dimensions KN and 
𝐾𝑇

𝐾𝑁
; macroscopic Poisson’s ratio is therefore determined 

solely by 
𝐾𝑇

𝐾𝑁
 and macroscopic Young’s modulus is then proportional to KN and 

affected by 
𝐾𝑇

𝐾𝑁
. 

Normal stiffness 

The algorithm commonly used in Yade computes normal interaction stiffness as 

stiffness of two springs in serial configuration with lengths equal to the sphere radii 

as seen in Fig. 5.2: 

 

Figure 5.6 Series of 2 springs representing normal stiffness of contact 

It is possible to define the distance 𝑙 = 𝑙1 + 𝑙2 where 𝑙𝑖 are the distances between 

contact point and sphere centres that are initially equal to the sphere radius. Change 
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of distance between the sphere centres Δ𝑙 is distributed onto deformations of both 

spheres Δ𝑙 = Δ𝑙1 + Δ𝑙2 proportionally to their compliances. Displacement 

change Δ𝑙𝑖 generates force 𝐹𝑖 = KiΔ𝑙𝑖, where 𝐾𝑖 assures proportionality and has 

physical meaning and dimension of stiffness; 𝐾𝑖 is related to the sphere material 

modulus 𝐸𝑖. 

5.2. Generated data 

 

Figure 5.7 Scheme of the RVE simulation 

In each RVE simulation, the displacement boundary conditions are prescribed as 

shown in Fig. 5.7.  The size of the DEM RVE is 10 cm x 10 cm x 5 cm, while the 

averaged grain diameter is 0.5 cm.  A set of displacement jump paths {un, us} is 

applied to the microscale RVE, and the tractions {tn, ts} are homogenized at each 

incremental deformation step.  

Before the displacement-driven grain-scale simulation begins, the DEM assembly 

must be in the stress state consistent to the macroscopic boundary condition. This 

is achieved by subjecting the DEM assembly with the right amount of shear and 

normal tractions along the boundaries. 

Discrete Element Method (DEM) has been used to study the micro-mechanisms of 

granular materials. By considering their discrete nature, DEM calculates the 

interactions between each contact at every time-step. This is capable of telling how 

particles become arranged in space to form an internal structure. 

In fact, we start from microstructure characterization in order to understand the 

macro-scale problem.  
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Table 5.1 Parameters chosen for the simulation 

 

The parameters chosen for the simulation are: 

Table 5.2 Properties of the particles 

Parameter of the particle Value 

Young’s Modulus E 0.5 GPa 

Poisson’s ratio v 0.3 

Friction angle 30° 

Density  2600 kg/m3 

Mean diameter 5 mm 

The gravel particle is assembled into a cube of 2000 spheres generated randomly. 

Then the program generates random loading cases changing the angle of the 

displacement applied to the RVE from 0° to 90°. In total the cases are 200. 

The load cases consist in pairs of numbers that are the sin and cosine of the angle 

of the vector applied.  

For each input parameters, the programs set up different assemblies that represent 

different connectivity between the particles. So, they will have different behaviours. 

The material represented with this simulation is gravel and the forces applied are 

maximum 10 MPa. At the end the data as well as the microscopic properties will 

be collected in a csv file. 
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6. Program design 

The steps to implement a neural network are described in the following paragraphs 

as functional parts of the code. Each phase has an infinite number of variables and 

ways to write it. The next subchapters focus only in the features developed in this 

thesis and do not comprehend all of the models that can possibly be implemented 

in a neural network. 

6.1. Python setup 

The code object of this thesis is written in Python language. Python is a high-level, 

general-purpose programming language created by Guido van Rossum and first 

released in 1991.  

Anaconda is a distribution of Python programming language for scientific 

computing (data science, machine learning applications, large-scale data 

processing, predictive analytics, etc.), that aims to simplify package management 

and deployment.  

The version 3.7 of Python is installed in the Anaconda environment.  

Figure 6.1 Python logo 

Figure 6.2 Anaconda logo 
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Anaconda navigator is a graphical user interface that allows to manage conda 

packages and launch applications. The code was written through the Spyder 

application. 

Spyder interface software was installed in Anaconda. It allows to program easily in 

the Python language.  

The Spyder interface includes an editor with an editor with syntax highlighting, 

introspection, code completion as seen in the Figure 6.3 below: 

 

Figure 6.3 Python interface 

For the code object to this thesis, various libraries were integrated in the Spyder 

environment to help the scientific programming in Python.  

Below a brief explanation of each library will be explained: 

TensorFlow 

This is an open-source library for dataflow and differentiable programming. It was 

developed by Google Brain for internal use in Google but then released in 2015. 

With this library it is possible to create models for neural networks from training to 

testing a dataset and allows to import the Keras library. 

Keras 
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Keras is an open-source library released in 2015. It is designed to enable fast 

experimentation with deep neural networks. In Keras, it is possible to assemble 

layers to build models. A model is usually a graph of layers and it helps to build a 

simple, fully-connected network such as a multi-layer perceptron. 

Keras contains numerous implementations of commonly used neural-network 

building blocks such as layers, objectives, activation functions, optimizers, and a 

host of tools to make working with image and text data easier to simplify the coding 

necessary for writing Deep Neural Network code. It supports other common utility 

layers like dropout, the activation function and batch normalization.  

NumPy 

This library allows to create arrays and calculate heavy operations with matrix and 

arrays.  

Pandas 

It is a software library for data manipulation and analysis. In particular, it offers 

data structures and operations for manipulating numerical tables and time series. 

Pandas is mainly used for machine learning in form of dataframes. Pandas allow 

importing data of various file formats such as csv, excel etc. 

Scikit-learn 

It features various classification, regression and clustering algorithms including 

support vector machines.  

MatPlotlib 

This is a Python 2D plotting library which produces publication quality figures in a 

variety of hardcopy formats and interactive environments across platforms. 

6.2.  Load Data 

The first step is to define the functions and classes used in this programme. In order 

to load the data set it is necessary to use the NumPy library. 
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The Dataset is created by a DEM simulation explained in the previous chapter and 

the data describes features of a granular material.  

All of the input variables that describe each load case are numerical. This makes it 

easy to use directly with neural networks that expect numerical input and output 

values, and ideal a simple neural network in Keras. The problem with implementing 

other neural network is that usually it is necessary to start from pictures or data that 

are not necessarily numbers. So the problem is how to convert every input in 

mathematical terms. 

The code will be learning a model to map rows of input variables (X) to an output 

variable (y), which we often summarize as y = f(X). 

The variables can be summarized as follows: 

Input Variables (X): selected columns of the csv file. 

Output Variables (y): selected columns of the csv file. 

Once the CSV file is loaded into memory, it is possible to split the columns of data 

into input and output variables. 

The data will be stored in a 2D array where the first dimension is rows and the 

second dimension are columns, e.g. [rows, columns]. 

6.3. Define Keras Model 

The model created with keras is a Sequential model that defined by sequence of 

layers. 

The first thing to do is to ensure the input layer has the right number of input 

features.  
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Figure 6.4 line of the code with implementation of layers 

Some of the features of the neural network have to be part of the trial and error 

process to find the best fit for the model. 

Generally, the network must be large enough to capture the structure of the problem. 

Furthermore, it is not possible to calculate the most efficient number of layers or 

the number of nodes to use per layer in an artificial neural network to address a 

specific real-world predictive modeling problem. 

The number of layers and the number of nodes in each layer are model 

hyperparameters that must be specified. 

In this thesis three types of models will be developed as described in the following 

subchapters: The Dense, the LSTM and GRU algorithms. 

6.3.1. Dense 

The definition of the Dense algorithm is: 

“Dense implements the operation: output = activation(dot(input, kernel) + bias) 

where activation is the element-wise activation function passed as the activation 
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argument, kernel is a weights matrix created by the layer, and bias is a bias vector 

created by the layer (only applicable if use_bias is True).”6 

It is a regular densely-connected neural network layer. The model dense is used for 

few and monotonic data where there is no history to train and predict such as curves 

of loading and unloading.  

Therefore it is commonly used for elastic materials that are independent from time. 

In the code written, it is possible to see how bad the algorithm predicts the non-

monotonic data. 

The function has several arguments as follows in the model: 

• Units: Positive integer, dimensionality of the output space. In this case the 

first to layers has 40 units and the third has just 2. 

• Activation: activation function to use. In this case the sigmoid activation 

function is applied. 

• Input_dim: positive integer, is the dimension of the input equal to 2. 

• Dropout: it consists in randomly setting a fraction rate of input units to 0 at 

each update during training time, which helps prevent overfitting. 

 

6 From Keras documentation, https://keras.io/layers/core/ 
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6.3.2. LSTM 

 

Figure 6.5 A LSTM neuron with input, output and forget gate to process sequence with memory effect 

LSTM also known as Long Short-Term Memory, is a technique commonly used in 

computational linguistics. It was first introduced by Hochreiter and Schmidhuber 

in 1997 to create a neural network capable of having memory. LSTM uses memory 

blocks and a new entity called “gate” is introduced to control the flow of 

information and the state of the block as shown in Fig. 6.5 

A LSTM neuron possesses a state of the memory cells at time t Ct. In this process 

there are some variables like xt that is the value of the input sequence at time t and 

ht is the value of the output sequence at time t.  

The signal through the forget gate is given by  

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ 𝑥𝑡 + 𝑈𝑓 ∙ ℎ𝑡−1 + 𝑏𝑓) 

Where 𝜎 is the sigmoid function 𝜎(𝑥) =
1

1+exp(−𝑥)
, 𝑊𝑓 𝑎𝑛𝑑 𝑈𝑓 are weight matrices, 

𝑏𝑓 the bias vector for the forget gate. 

The new information to be stored in the cell state is given by the signal it through 

the input gate 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ 𝑥𝑡 + 𝑈𝑖 ∙ ℎ𝑡−1 + 𝑏𝑖) 
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Where 𝑊𝑖  𝑎𝑛𝑑 𝑈𝑖 are weight matrices and 𝑏𝑖 is the bias vector for the input gate. 

The new candidate value cell state is given by a tanh layer: 

𝐶𝑡̃ = tanh(𝑊𝐶𝑥𝑡 + 𝑈𝐶ℎ𝑡−1 + 𝑏𝐶) 

where tanh is the hyperbolic tangent function tanh(𝑥) =

exp(𝑥)−exp (−𝑥)

exp(𝑥)+exp (−𝑥)
,𝑊𝐶𝑎𝑛𝑑 𝑈𝐶 are weight matrices, bC is bias vector. 

The old cell state Ct−1 is updated by the above forget and input information, i.e., 

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶𝑡̃ 

Finally, for the output signal 

ℎ𝑡 = 𝑜𝑡tanh (𝐶𝑡) 

where ot is the signal through the output gate 

𝑜𝑡 = 𝜎(𝑊0𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) 

where Wo and Uo are weight matrices, bo is bias vector for the output gate. 

LSTM neural network accepts sequences of history values of the physical 

parameters as inputs. 

The building and training of the LSTM data-driven model contains four steps. 

Firstly, the data of numerical simulations are stored in comma-separated values 

(CSV) file and are imported by an open-source Python data analysis library Pandas. 

The data are split into input features and outputs. 

Each sequence of input and output is re-scaled to be within [0, 1] using the 

MinMaxScaler class in sklearn.preprocessing toolkit . The input data structure that 

can be processed by the LSTM model must be an array of dimension 3, where the 

entries for the first dimension are the samples, the second dimension are the time 

history steps and the last dimension are the input features.  

After the neural network is built, the training parts of the epochs starts. It is possible 

feed the LSTM model with the preprocessed input and output data. The back-

propagation algorithm will modify the weights of the neural network iteratively and 
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the loss will be reduced to a small number (about 5 * 10-5 in this work). The learning 

rate can be reduced when the convergence becomes slow. 

During back propagation, recurrent neural networks suffer from the vanishing 

gradient problem. Gradients are values used to update a neural networks weight. 

The vanishing gradient problem is when the gradient shrinks as it back propagates 

through time. If a gradient value becomes extremely small, it doesn’t contribute too 

much learning. 

This type of algorithm as well as the less common GRU is used for a large amount 

of data- the csv file contains more than 16 thousand rows that correspond to the 

total amount of data. Because they have memory, they are able to learn and predict 

well plastic material in general such as the object of this thesis.  

In opposite with the Dense layer, they have memory and take account of the 

timesteps regarding the input data.  

6.3.3. GRU 

The Gated Recurrent unit, also known as GRU, was introduced by Cho et al. in 

2014 in order to solve the vanishing gradient problem. It can be considered as a 

standard recurrent neural network and a variation of the LSTM algorithm. 

To solve the vanishing gradient problem of a standard RNN, GRU uses, so-called, 

update gate and reset gate. Basically, these are two vectors which decide what 

information should be passed to the output. The special thing about them is that 

they can be trained to keep information from long ago, without washing it through 

time or remove information which is irrelevant to the prediction. 

In order to explain the mathematics behind the process, a single unit will be 

examined from the following recurrent neural network: 



68 

 

 

 

Figure 6.6 neural network with Gated recurrent unit 

 

Figure 6.7 Gated Recurrent Unit 

In Fig 6.7 it is possible to see different symbols that are used in this network such 

as: 

 

Update Gate 

The update gate helps the model to determine how much of the past information 

(from previous time steps) need to be passed along to the future. 
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It is the left part of Fig. 6.7, where the update gate zt is calculated for time step t 

using the formula: 

𝑧𝑡 = 𝜎(𝑊(𝑧)𝑥𝑡 + 𝑈(𝑧)ℎ𝑡−1) 

When 𝑥𝑡 is plugged into the network unit, it is multiplied by its own weight 𝑊(𝑧). 

The same goes for ℎ𝑡−1which holds the information for the previous t-1 units and 

is multiplied by its own weight 𝑈(𝑧). Both results are added together and a sigmoid 

activation function is applied to squash the result between 0 and 1. 

Reset gate 

Essentially, this gate is used from the model to decide how much of the past 

information to forget. It can be expressed as: 

𝑟𝑡 = 𝜎(𝑊(𝑟)𝑥𝑡 + 𝑈(𝑟)ℎ𝑡−1) 

This formula is the same as the one for the update gate. The difference comes in the 

weights and the gate’s usage. As the previous step, looking and the next step of Fig. 

6.7, the blue line represents ℎ𝑡−1 while the purple line is 𝑥𝑡. These two parameters 

must be multiplied themselves for the corresponding weights, sum the results and 

apply the sigmoid function. 

Current memory content 

A new memory content is introduced that will use the reset gate to store the relevant 

information from the past. It is calculated as follows: 

ℎ𝑡
′ = tanh(𝑊𝑥𝑡 + 𝑟𝑡⨀𝑈ℎ𝑡−1) 

The input 𝑥𝑡 is multiplied with his weight W and ℎ𝑡−1 with U. Then the Hadamard 

(element-wise) product is calculated between the reset gate 𝑟𝑡 and 𝑈ℎ𝑡−1. That will 

be determine what to remove from the previous time steps. The neural network will 

learn to assign 𝑟𝑡 vector close to 0, forgetting about the previous time steps, focusing 

only on the last sentences. 

Then the results of the two previous steps are summed up and the nonlinear 

activation function tanh is applied. 
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Final memory at current time steps 

As the last step, the network needs to calculate vector ℎ𝑡 which holds information 

for the current unit and passes it down to the network. This is done by the update 

gate that determines what to collect from the current memory content ℎ𝑡
′  and from 

the previous step ℎ𝑡−1. 

ℎ𝑡 = 𝑧𝑡⨀ℎ𝑡−1 + (1 − 𝑧𝑡)⨀ℎ𝑡
′  

The model can learn to set the vector 𝑧𝑡 close to 1 and keep a majority of the 

previous information. Since 𝑧𝑡 will be close to 1 at this time step, 1-𝑧𝑡 will be close 

to 0 which will ignore big portion of the current content that is irrelevant for the 

prediction. 

6.4.  Compile Keras Model 

Once that the model has been defined, it can be compiled. Compiling the model can 

be easy by using several efficient numerical libraries such as TensorFlow. The 

backend automatically chooses the best way to represent the network for training 

and making predictions to run on the hardware. 

When compiling, some additional properties useful to better predict the data are 

required and must be specified. Training a network means finding the best set of 

weights to map inputs to outputs in our dataset. In fact, these parameters help the 

network to improve itself. 

A loss function must be defined in order to evaluate a set of weights and also the 

optimizer, which is used to search through different weights for the network and 

any optional metrics that are likely to collect and report during training. 

In this case, we will use mean squared error as the loss argument. The Mean 

Squared Error, or MSE, loss is the default loss to use for regression problems. 

Mathematically, it is the preferred loss function under the inference framework of 

maximum likelihood if the distribution of the target variable is Gaussian.  
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Mean squared error is calculated as the average of the squared differences between 

the predicted and actual values. The result is always positive regardless of the sign 

of the predicted and actual values and a perfect value is 0.0. The squaring means 

that larger mistakes result in more error than smaller mistakes, meaning that the 

model is punished for making larger mistakes. 

It will be defined an optimizer as the efficient stochastic gradient descent algorithm 

“adam” that means “Adaptive moment estimation”. This is a popular version of 

gradient descent because it automatically tunes itself and gives good results in a 

wide range of problems.  

It was first introduced in 2005 by Diederik Kingma and Jimmy Ba specifying that 

the Adam optimization algorithm is an extension to stochastic gradient descent that 

has recently seen broader adoption for deep learning applications in computer 

vision and natural language processing. 

6.5.  Train Keras Model 

Once the model is compiled and has an efficient computation, it should be ready to 

be executed on some data. 

A simple way to train the model is to call the fit () function on the model. 

Training occurs epochs and each epoch is split into batches. In fact, one epoch is 

composed of one or more batches, based on the chosen batch size and the model is 

fit for many epochs. 

Epoch: One pass through all of the rows in the training dataset. It is the number of 

epochs to train the model. An epoch is an iteration over the entire input and output 

data provided. 

Batch: One or more samples considered by the model within an epoch before 

weights are updated. It is the number of samples per gradient update. If unspecified, 

batch_size will default to 32. 

The training process will run for a fixed number of iterations through the dataset 

called epochs, that we must specify using the epochs argument. Another parameter 
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must be set and it is the number of dataset rows that are considered before the model 

weights are updated within each epoch, called the batch size and set using the 

batch_size argument. These configurations can be chosen experimentally by trial 

and error. 

The batch size is a hyperparameter that defines the number of samples to work 

through before updating the internal model parameters. 

When all training samples are used to create one batch, the learning algorithm is 

called batch gradient descent. When the batch is the size of one sample, the learning 

algorithm is called stochastic gradient descent. When the batch size is more than 

one sample and less than the size of the training dataset, the learning algorithm is 

called mini-batch gradient descent. 

- Batch Gradient Descent. Batch Size = Size of Training Set 

- Stochastic Gradient Descent. Batch Size = 1 

- Mini-Batch Gradient Descent. 1 < Batch Size < Size of Training Set 

The number of epochs is a hyperparameter that defines the number times that the 

learning algorithm will work through the entire training dataset. In other words, it 

is the number of complete passes through the training dataset before the training 

process is terminated. 

One epoch means that each sample in the training dataset has had an opportunity to 

update the internal model parameters.  

6.6.  Test Keras Model 

Now that the neural network has been trained on the entire dataset, it is possible to 

evaluate its performances on the same dataset. 

This phase is written through the predict () function on the model that passes the 

same input and output used to train the model. This will generate a prediction for 

each input and output pair and collect scores. 

Making predictions is as easy as calling the predict () function on the model. After 

the model is fit, predictions are made for all examples in the dataset.  
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All neural network models have two hidden layers of 100 nodes. The sigmoid 

activation function is chosen for the output layer. In this work, two different 

activation function has been used. Initially the Sigmoid function as the default one 

and then the ‘Relu? To see the differences in terms of loss.  
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7. Results 

In this chapter the results of this work will be presented in the form of graph for 

different cases. After running several models with different hyperparameters, the 

results are shown as learning curves and error tables. 

A logic sequence has been followed in order to choose the kind of algorithm and its 

parameters in the most efficient time and computational cost. 

All the results units are m for displacements and Pa for tractions.  

7.1  Dense 

The dense model works without memory so it is not able to predict well elasto-

plastic behaviour of granular materials in the training and testing phases.  

First of all, after setting all parameters, it is possible to see differences in the graphs 

while changing the number epochs of the model. By increasing the epochs, the 

results will be more accurate and the error will decrease.  

The system to define whether changing the parameters helps the prediction of the 

tractions is by looking at the overall error and how close the prediction curve 

becomes regarding the data curve. 

In this way the distance between the effective and physical data and the 

computational predictions, known as loss is decreasing. 
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7.1.1. Changing Epochs 

 

Figure 7.1 Case 20, epochs 100, batch 100 

 

 

Figure 7.2 Case 20, epochs 1000, batch 100 
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In Fig. 7.1 and 7.2 the same case (case 20) is shown with different number of 

epochs. If the number of iteration increases, the curve that fit and predict the data 

will improve as noticeable in the two graphs. 

7.1.2. Changing input 

In this subchapter will be studied how the predictions improve while changing the 

number of input. 

In the Fig. 7.3 and 7.4 that represent Case 1, the epochs are 1000 and batch size is 

10. A notable improvement of the results is seen as porosity and the fabric tensor 

are added as input. Note that Fig. 7.3 has just two input (Un and Us) while Fig. 7.4 

has 4 input (Un, Us, Porosity and Fabric Tensor). 

Not every material property has the same value as input. In this case, by adding all 

the one available in the DEM simulation except from the coordination number, the 

dense model is capable to fit even the plasticity parts. 
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Figure 7.3 Case 1, epochs 1000, batch 10 , input just displacement 

 

Figure 7.4 Case 1, epochs 1000, batch 100, Porosity and Fabric Tensor 
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It is also possible to see in these two figures that the Dense model is still roughly 

capable to predict more complicated curves thanks to the parameter Fabric Tensor.  

This improvement is more evident in case 10 where the Fabric Tensor changes 

completely the prediction curve and the result is more accurate but still non-

sufficient to predict well the problem: 

 

Figure 7.5 Case 10, epochs 1000, batch 10, Input: Un, Us and  Porosity 
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Figure 7.6 Case 10, epochs 1000, batch 10, Input: Un, Us, Porosity and Fabric Tensor 

In conclusion, the dense model even increasing the number of input or the iterations, 

is not capable to predict the non-elastic curves as seen in the previous images. 

The main reason could be that the Dense layer has not been developed to perform 

with a large and sophisticated amount of data. 

7.2  LSTM 

The LSTM layers as well as the GRU in the next subchapter, are capable to better 

capture the elasto-plastic behaviour of granular materials thanks to the memory 

gates.It is also commonly used for manging thousands of data with different 

relationships and pattens among them. 

 In this subchapter the best combination of input is studied with 100 epochs because 

the computational cost is lesser that increasing the iterations. Then, the number of 

iterations will be increases with the case of input with less error in order to perform 

a more efficient analysis. The error will be computed with the mean squared error 

between the training and the testing data but also in the form of learning curves. 
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The data obtained from lower-scale numerical simulations are pre-processed and 

converted to specific data structure compatible with the LSTM and GRU training 

and validation algorithms. 

7.2.1. Changing input  

The best combination of input has been studied in terms of error. The general loss 

is calculated from the training dataset that gives an idea of how well the model is 

learning. The other type of error is the validation loss that is calculated from a hold-

out validation dataset that gives an idea of how well the model is generalizing. 

The ‘validation split’ command is a float between 0 and 1. Basically, it is a fraction 

of the training data to be used as validation data. The model will set apart this 

fraction of the training data, will not train on it, and will evaluate the loss and any 

model metrics on this data at the end of each epoch. The validation data is selected 

from the last samples in the input and output data provided, before shuffling. 

Among all of the input data, the 90% of them are used to train the neural network 

and the 10% is used to validate it. The loss is the mean squared error between the 

dataset and the data trained/validated. 

Here our goal is to check whether the incorporation of any of these additional data 

as input in the RNN network improves the prediction quality. 

Running the neural network with 100 epochs, the results in terms of error at the 

100th epoch are: 

Table 7.1 Errors Changing the number of inputs (LSTM) 

Input Training loss Validation loss 

Us, Un 4.34*10-4 2.94*10-4 

Us, Un, Coordination number 3.90*10-4 2.65*10-4 

Us, Un, Porosity 4.19*10-4 2.86*10-4 
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Us, Un, Fabric Tensor 6.14*10-5 5.60*10-5 

Us, Un, Coordination number and porosity 3.91*10-4 2.65*10-4 

Us, Un, Coordination number and Fabric 

Tensor 

6.23*10-5 5.93*10-5 

Us, Un, Porosity and Fabric Tensor 6.07*10-5 5.52*10-5 

Us, Un, Coordination number, porosity and 

Fabric Tensor 

5.81*10-5 5.22*10-5 

The fabric tensor is the parameter that better helps the neural network to predict the 

tractions. The error is one order smaller that with just the other parameters.  

It is possible to see that the coordination number is more effective than the porosity. 

Computationally speaking, this means that the fabric tensor as well as the 

coordination number, better represents the behaviour of a granular material. 

In terms of error, the best combination is the one with all of the parameters as input. 

In the following images it is possible to see the differences in term of predicting 

curves with the number of inputs in case 200 with 100 epochs. 

  

Figure 7.7 Case 200 Input: Un, Us 
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Figure 7.8 Case 200 Input: Un, Us and Porosity 

  

Figure 7.9 Case 200 Input: Un, Us and Coordination number 

Fig. 7.8 and 7.9 have the same number of input but one of them seems to have more 

influence in the prediction curve, even if in this case is not well fitted. 

The coordination number generally decrease the error and helps the curve to 

become closer to Case 200. 
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Figure 7.10 Case 200 Input: Un, Us and Fabric Tensor 

  

Figure 7.11 Case 200 Input: Un, Us Porosity and Coordination number 

Even with porosity and coordination number together, an impressive improvement 

is due to the fabric tensor in Fig. 7.10 
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Figure 7.12 Case 200 Input: Un, Us, Coordination number and Fabric Tensor 

  

Figure 7.13 Case 200 Input: Un, Us, Porosity and Fabric Tensor 
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Figure 7.14 Case 200 Input: Un, Us, Coordination number, Porosity and Fabric Tensor 

In conclusion, the best combination of input is the one reported in Fig. 7.14 with all 

the input together. The error is lesser than all the other combinations. 

7.2.2. Learning curves 

Generally, a learning curve is a plot that shows time or experience on the x-axis and 

learning or improvement on the y-axis. During the training of a machine learning 

model, the current state of the model at each step of the training algorithm can be 

evaluated. It can be evaluated on the training dataset to give an idea of how well the 

model is “learning.” It can also be evaluated on a hold-out validation dataset that is 

not part of the training dataset. Evaluation on the validation dataset gives an idea of 

how well the model is “generalizing.” 

• Train Learning Curve: Learning curve calculated from the training dataset 

that gives an idea of how well the model is learning. 

• Validation Learning Curve: Learning curve calculated from a hold-out 

validation dataset that gives an idea of how well the model is generalizing. 

It is common to create dual learning curves for a machine learning model during 

training on both the training and validation datasets. 
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The curves in this work are optimization learning curves where the curves are 

calculated on the metric by which the parameters of the model are being optimized 

e.g. loss. 

A good fit is the goal of the learning algorithm and exists between an overfit and 

underfit model. 

A good fit is identified by a training and validation loss that decreases to a point of 

stability with a minimal gap between the two final loss values. 

The loss of the model will almost always be lower on the training dataset than the 

validation dataset. This means that we should expect some gap between the train 

and validation loss learning curves. This gap is referred to as the “generalization 

gap.” 

A plot of learning curves shows a good fit if: 

• The plot of training loss decreases to a point of stability. 

• The plot of validation loss decreases to a point of stability and has a small 

gap with the training loss. 

Here are presented three different learning curves, depending on the number of 

epochs they are referred to. All three Figures are referred to the model with all the 

inputs on it because it is the best fit with less error. 

In general, the models show a good fit and there is not an overfitting problem. The 

curves from Fig, 7.15 to 7.17 show a slightly progress with the increasing of the 

number of epochs.   
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Figure 7.15 Learning curves with 10 epochs 

 

Figure 7.16 Learning curves with 100 epochs 

 

Figure 7.17 Learning curves with 1000 epochs 
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7.2.3. Changing Epochs 

The error between the train and the test phase is valuated with the mean squared 

error. In this work the error is divided in each case of the dataset, the first 10000 

rows of the csv file are used to train the network while the other to test the model. 

The error decrease with the number of epochs as seen in §7.2.2 and the model used 

in this subchapter has all of the input in order to minimize the error.  

 

Figure 7.18 Mean Squared Error with 10 epochs 

 



90 

 

 

 

Figure 7.19 Mean Squared Error with 100 epochs 

 

Figure 7.20 Mean Squared Error with 1000 epochs 

Every case has a distinct error because some cases are different and the related 

curves have various shapes among the other. This means that the model cannot 

predict well some of them. There are a lot of improvement between Fig. 7.18 and 

7.19 because the model can predict much more data. From fig. 7.19 and 7.20 there 

are no big differences. 
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With the best combination of input found in the previous subchapter, it is possible 

to increase the epochs and see the loss for training and validation at the 1000th 

epoch. 

Table 7.2 Errors changing the number of epochs (LSTM) 

Total epochs Training loss Validation loss 

100 5.819*10-5 5.22*10-5 

1000 5.14*10-5 4.62*10-5 

 

Now will be presented the differences between some cases with respectively 100 

and 1000 epochs. Note that the first case has no component in s direction. 
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• Case 1 

 

Figure 7.21 Case 1, 100 epochs 

   

Figure 7.22 Case 1, 1000 epochs 
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• Case 2 

 

Figure 7.23 Case 2, 100 epochs 

  

Figure 7.24 Case 2, 1000 epochs 
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• Case 10 

 

Figure 7.25 Case 10, 100 epochs 

 

  

Figure 7.26 Case 10, 1000 epochs 
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• Case 20 

 

Figure 7.27 Case 20, 100 epochs 

  

Figure 7.28 Case 20, 1000 epochs 
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• Case 50 

 

Figure 7.29 Case 50, 100 epochs 

  

Figure 7.30 Case 50, 1000 epochs 

 

 

 

 

 

 



97 

 

 

• Case 100 

 

Figure 7.31 Case 100, 100 epochs 

  

Figure 7.32 Case 100, 1000 epochs 
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• Case 200 

 

Figure 7.33 Case 200, 100 epochs 

  

Figure 7.34 Case 200, 1000 epochs 
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7.2.4. Changing activation function 

The differences between two main activation functions have been developed in this 

work. All of the previous models had the “Sigmoid function” as activation function 

and the other one to code was the “Relu” function. 

Basically, the only difference in practice is in term of the validation loss because it 

doesn’t change the general loss at the 1000th epoch. 

Table 7.3 Errors changing activation function (LSTM) 

Activation function Training loss Validation loss 

Sigmoid 5.14*10-5 4.62*10-5 

Relu 5.14*10-5 4.49*10-5 

 

Figure 7.35 learning curve with Relu activation function 

As seen in Fig 7.35 in this model there are no problems of overfitting and in general 

the error can be approximated to zero. 
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Figure 7.36 Mean squared error-Relu activation function 

 

Figure 7.37 Mean squared error-Sigmoid activation function 

In Fig. 7.36 the mean squared error associated to the model with the Relu function 

is lower to the one with the sigmoid function as seen in Fig. 7.37. 

7.3  GRU 

The GRU algorithm is a form of LSTM that has been modified as explained in the 

previous chapters. While all the parameters stays the same, the model with GRU 

layers doesn’t predict well as the LSTM model so it has been necessary to reduce 

the batch size in order to capture more details in the traction-separations curves. 
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First of all it has been necessary to build a model made by two GRU layers with 2 

neurons each and without any dropout. Another Dense layer has been added at the 

end. 

All of the model had as input the displacements, the porosity, the coordination 

number and the fabric tensor. The Traction had been used as outputs. 

7.3.1. Changing epochs 

Differences in terms of learning rate between a model trained with 130 epochs such 

as the LSTM model and with the sigmoid activation function. The validation split 

is 0.1 as the previous cases. 

 

Figure 7.38 Learning curves with 100 epochs 

 

Figure 7.39 Learning curves with 1000 epochs 
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The error has decreased but not considerably between the two cases at the last 

epoch. Note that there are no problems of overfitting so the model is training well.  

Table 7.4 Errors changing the number of epochs (GRU) 

Epoch Training loss Validation loss 

100 5.75*10-5 5.04*10-5 

1000 5.17*10-5 4.57*10-5 

Some cases will now be presented as comparison between these two situations. 

• Case 1 

 

Figure 7.40 Case 1, 100 epochs 

 

Figure 7.41 Case 1, 1000 epochs 
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• Case 50 

 

Figure 7.42 Case 50, 100 epochs 

  

Figure 7.43 Case 50, 1000 epochs 
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• Case 200 

 

Figure 7.44 Case 200, 100 epochs 

  

Figure 7.45 Case 200, 1000 epochs 
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Figure 7.46 Mean Squared Error, 100 epochs 

 

Figure 7.47 Mean Squared Error, 1000 epochs 

Since increasing the number of epochs has not improved the differences in terms of 

prediction curves and final error, the GRU model needed to be modified and 

adjusted to these kind of dataset so the first thing that has been changed is the 

activation function.  

7.3.2. Changing activation function 

In order to minimize the time and computational cost, the Relu activation function 

has been introduced in the model with 100 epochs. 
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In terms of error, the loss at the 100th epoch is: 

Table 7.5 Errors changing the activation function (GRU) 

Activation function Training loss Validation loss 

Sigmoid 5.75*10-5 5.04*10-5 

Relu 5.49*10-5 4.87*10-5 

 

7.3.3. Changing batch size 

Since the error in general can be improved, the batch size has been changed from 

130 to 64. The proceed is based on trial and error although there are some 

algorithms that can help to decide with size is better. In general, choosing the batch 

size depend on the problem type, the size of the dataset and the layers. In this case, 

with GRU network a smaller batch size has been introduced to better capture the 

nonlinear behaviour of the material. 

All the trained models in this subchapter have the Relu Activation function because 

it can reduce the error and have been trained with 100 epochs. 

In Tab. 7.6 it is possible to see how the mean squared error in each phase of the 

neural network is reducing while changing the batch size but not the activation 

function. 

Table 7.6 Errors changing batch size (GRU) 

Batch size Training loss Validation loss 

130 5.49*10-5 4.87*10-5 

64 3.11*10-5 2.27*10-5 

As last improvement the number of epochs has been increased to 1000 to see the 

real differences in terms of error and graphically in the traction-separation curves. 
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The Relu activation function and batch size of 64 samples has been maintained in 

the final model. 

 

Figure 7.48 Mean Squared Error, 100 epochs 

 

Figure 7.49 Mean Squared Error, 1000 epochs 
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Figure 7.50 Learning curves with 100 epochs 

 

Figure 7.51 Learning curves with 1000 epochs 

The final results with the GRU model are the following: 
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Figure 7.52 Case 1 

 

Figure 7.53 Case 2 
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Figure 7.54 Case 10 

 

Figure 7.55 Case 17 



111 

 

 

 

Figure 7.56 Case 20 

 

Figure 7.57 Case 50 
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Figure 7.58 Case 100 

 

Figure 7.59 Case 170 
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Figure 7.60 Case 200 
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8. Conclusions 

Starting from the DEM simulations, in few hours a huge amount of data has been 

created instead of doing hundreds of laboratory experiments.  

Furthermore, this machine learning approach helps us to create new and more 

complicated constitutive laws that do not require human supports just by coding a 

proper neural network.  

In fact, the machine learning approach has been successful because it can predict 

more complicated traction-separation constitutive laws giving the displacement as 

input and the tractions as output. Due to the nature of granular materials. It has been 

possible to classify which property better represents the behaviour of the material. 

In particular, the Fabric Tensor that indicates how the single grains are oriented 

improves well the constitutive laws. 

Second, the coordination number that characterizes how connected are the grains 

and last the porosity which is a macroscopic feature. 

The intrinsic nature of the algorithms used in this work have been displayed. In 

particular, the differences between a simple layer and a recurrent neural network 

with memory cells. 

This method allows to predict data with a black box model, which is not easy to 

comprehend. The mechanism and the single decisions made by the network in each 

hidden layer lead to a sort of knowledge of the algorithm hard to comprehend. 

For sure this approach is able to best predict any kind of materials by just adjusting 

the hyperparameters of the networks because the algorithm generates relationship 

among different measurable physical quantities. 

New development of this work can be done by adding algorithms that automatically 

choose the best value of all the hyperparameters so that the human error could be 

minimized. 
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