

UNIVERSITÀ DEGLI STUDI DI PADOVA
DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE E AMBIENTALE

Department of Civil, Environmental and Architectural Engineering

COLUMBIA UNIVERSITY

FU FOUNDATION SCHOOL OF ENGINEERING AND APPLIED SCIENCE
Department of Civil Engineering and Engineering Mechanics

Corso di Laurea Magistrale in Ingegneria Civile

TESI DI LAUREA

MACHINE LEARNING APPROACH TO DATA-DRIVEN

MULTISCALE TRACTION-SEPARATION LAWS FOR

GRANULAR MATERIALS

Relatore:
Chiar.ma PROF.SSA VALENTINA SALOMONI

Laureanda: SARA MICHIELETTO
 1179043

ANNO ACCADEMICO 2018-2019

Contents

List of Figures ___ IV

List of Tables ___ VIII

Acknowledgments ___ IX

1. Introduction __ 1

2. Elements of Machine Learning _________________________________ 3

2.1. Supervised learning ___ 5

2.2. Perceptron __ 7

2.3. Deep learning and Artificial Neural Network _________________________ 8

2.4. Structure of the network __ 12

2.4.1. Training the network __ 13

2.4.2. Testing the network ___ 15

2.4.3. Activation function ___ 16

2.4.4. Back propagation algorithm __ 20

3. Traction separation law ______________________________________ 27

3.1. Displacement based models ______________________________________ 30

3.1.1. One-dimensional models___ 31

3.1.2. Three dimension model __ 35

3.2. Potential-based models ___ 35

4. Granular material properties __________________________________ 45

4.1. Representative Volume Element __________________________________ 46

4.2. Microstructure Characterization __________________________________ 47

4.3. Macroscopic Characterization ____________________________________ 48

5. Data Generation__ 51

5.1. Discrete Element Method _______________________________________ 51

5.2. Generated data __ 56

II

6. Program design __ 59

6.1. Python setup ___ 59

6.2. Load Data ___ 61

6.3. Define Keras Model __ 62

6.3.1. Dense __ 63

6.3.2. LSTM ___ 65

6.3.3. GRU ___ 67

6.4. Compile Keras Model __ 70

6.5. Train Keras Model ___ 71

6.6. Test Keras Model __ 72

7. Results ___ 75

7.1 Dense ___ 75

7.1.1. Changing Epochs ___ 76

7.1.2. Changing input ___ 77

7.2 LSTM ___ 80

7.2.1. Changing input ___ 81

7.2.2. Learning curves __ 86

7.2.3. Changing Epochs ___ 89

7.2.4. Changing activation function__ 99

7.3 GRU ___ 100

7.3.1. Changing epochs __ 101

7.3.2. Changing activation function___ 105

7.3.3. Changing batch size __ 106

8. Conclusions __ 115

Bibliography __ 117

III

IV

List of Figures

Figure 2.1 Machine learning categories ... 4

Figure 2.2 Scheme of Machine learning approaches ... 5

Figure 2.3 Perceptron Scheme ... 7

Figure 2.4 Biological Neuron .. 9

Figure 2.5 Artificial Neural Network .. 10

Figure 2.6 Three layer neural network ... 12

Figure 2.7 Gradient Loss Algorithm scheme ... 14

Figure 2.8 Learning Rate ... 15

Figure 2.9 Sigmoid Function ... 18

Figure 2.10 Tangent Hyperbolic Function ... 18

Figure 2.11 RELU Function .. 20

Figure 3.1 Zoom of the cohesive zone ... 27

Figure 3.2 (a) Stress-displacement response and (b) Damage zone ahead a crack.

 ... 28

Figure 3.3 Mode I, II, II as different ways to apply a force that lead to a crack ... 29

Figure 3.4 Different types of curves such as(a) cubic polynomial function, (b)

exponential function and (c) trilinear law. ... 31

Figure 3.5 Local coordinate system (a)two-dimensions and (b) three-dimensions

cohesive separations. ... 35

Figure 4.1 Representative volume element for granular material 46

Figure 4.2 RVE and coordination number ... 47

Figure 5.1 Scheme of an RVE ... 51

Figure 5.2 Contact laws governing the interactions by Cundall and Strack (1979)

 ... 52

Figure 5.3 Model of the soft sphere ... 53

file:///C:/Users/saram/Google%20Drive/Tesi_9_marzo.docx%23_Toc34669684
file:///C:/Users/saram/Google%20Drive/Tesi_9_marzo.docx%23_Toc34669684

V

Figure 5.4 Model of the hard sphere .. 53

Figure 5.5 Overlap between p and q sphere ... 54

Figure 5.6 Series of 2 springs representing normal stiffness of contact 55

Figure 5.7 Scheme of the RVE simulation .. 56

Figure 6.1 Python logo ... 59

Figure 6.2 Anaconda logo .. 59

Figure 6.3 Python interface .. 60

Figure 6.4 Line of the code with implementation of layers 63

Figure 6.5 A LSTM neuron with input, output and forget gate to process sequence

with memory effect .. 65

Figure 6.6 Neural network with Gated recurrent unit .. 68

Figure 6.7 Gated Recurrent Unit .. 68

Figure 7.1 Case 20, epochs 100, batch 100 ... 76

Figure 7.2 Case 20, epochs 1000, batch 100 ... 76

Figure 7.3 Case 1, epochs 1000, batch 10 , input just displacement 78

Figure 7.4 Case 1, epochs 1000, batch 100, Porosity and Fabric Tensor 78

Figure 7.5 Case 10, epochs 1000, batch 10, Input: Un, Us and Porosity 79

Figure 7.6 Case 10, epochs 1000, batch 10, Input: Un, Us, Porosity and Fabric

Tensor .. 80

Figure 7.7 Case 200 Input: Un, Us .. 82

Figure 7.8 Case 200 Input: Un, Us and Porosity ... 83

Figure 7.9 Case 200 Input: Un, Us and Coordination number 83

Figure 7.10 Case 200 Input: Un, Us and Fabric Tensor .. 84

Figure 7.11 Case 200 Input: Un, Us Porosity and Coordination number 84

Figure 7.12 Case 200 Input: Un, Us, Coordination number and Fabric Tensor 85

Figure 7.13 Case 200 Input: Un, Us, Porosity and Fabric Tensor 85

file:///C:/Users/saram/Google%20Drive/Tesi_9_marzo.docx%23_Toc34669697
file:///C:/Users/saram/Google%20Drive/Tesi_9_marzo.docx%23_Toc34669698

VI

Figure 7.14 Case 200 Input: Un, Us, Coordination number, Porosity and Fabric

Tensor .. 86

Figure 7.15 Learning curves with 10 epochs ... 88

Figure 7.16 Learning curves with 100 epochs ... 88

Figure 7.17 Learning curves with 1000 epochs ... 88

Figure 7.18 Mean Squared Error with 10 epochs .. 89

Figure 7.19 Mean Squared Error with 100 epochs .. 90

Figure 7.20 Mean Squared Error with 1000 epochs .. 90

Figure 7.21 Case 1, 100 epochs ... 92

Figure 7.22 Case 1, 1000 epochs ... 92

Figure 7.23 Case 2, 100 epochs ... 93

Figure 7.24 Case 2, 1000 epochs ... 93

Figure 7.25 Case 10, 100 epochs ... 94

Figure 7.26 Case 10, 1000 epochs ... 94

Figure 7.27 Case 20, 100 epochs ... 95

Figure 7.28 Case 20, 1000 epochs ... 95

Figure 7.29 Case 50, 100 epochs ... 96

Figure 7.30 Case 50, 1000 epochs ... 96

Figure 7.31 Case 100, 100 epochs ... 97

Figure 7.32 Case 100, 1000 epochs ... 97

Figure 7.33 Case 200, 100 epochs ... 98

Figure 7.34 Case 200, 1000 epochs ... 98

Figure 7.35 Learning curve with Relu activation function 99

Figure 7.36 Mean squared error-Relu activation function 100

Figure 7.37 Mean squared error-Sigmoid activation function 100

VII

Figure 7.38 Learning curves with 100 epochs ... 101

Figure 7.39 Learning curves with 1000 epochs ... 101

Figure 7.40 Case 1, 100 epochs ... 102

Figure 7.41 Case 1, 1000 epochs ... 102

Figure 7.42 Case 50, 100 epochs ... 103

Figure 7.43 Case 50, 1000 epochs ... 103

Figure 7.44 Case 200, 100 epochs ... 104

Figure 7.45 Case 200, 1000 epochs ... 104

Figure 7.46 Mean Squared Error, 100 epochs ... 105

Figure 7.47 Mean Squared Error, 1000 epochs ... 105

Figure 7.48 Mean Squared Error, 100 epochs ... 107

Figure 7.49 Mean Squared Error, 1000 epochs ... 107

Figure 7.50 Learning curves with 100 epochs ... 108

Figure 7.51 Learning curves with 1000 epochs ... 108

Figure 7.52 Case 1 ... 109

Figure 7.53 Case 2 ... 109

Figure 7.54 Case 10 ... 110

Figure 7.55 Case 17 ... 110

Figure 7.56 Case 20 ... 111

Figure 7.57 Case 50 ... 111

Figure 7.58 Case 100 ... 112

Figure 7.59 Case 170 ... 112

Figure 7.60 Case 200 ... 113

VIII

List of Tables

Table 5.1 Parameters chosen for the simulation .. 57

Table 5.2 Properties of the particles .. 57

Table 7.1 Errors Changing the number of inputs (LSTM) 81

Table 7.2 Errors changing the number of epochs (LSTM) 91

Table 7.3 Errors changing activation function (LSTM) .. 99

Table 7.4 Errors changing the number of epochs (GRU) 102

Table 7.5 Errors changing the activation function (GRU) 106

Table 7.6 Errors changing batch size (GRU) ... 106

IX

Acknowledgments

First, I would like to express my most gratitude to my advisor Professor Valentina

Salomoni for the precious opportunity she presented me and the inspirational

encouragement throughout this experience.

I am grateful to Professor Steve WaiChing Sun for the precious time and work spent

helping me understand the object of this dissertation and having me as part of his

staff for a short period at Columbia University.

During the last five years at University, I enjoyed support from a group of my

colleagues. With our knowledge and friendship we have help each other during

these years and this meant a lot to me. We have shared a lot of unforgettable

moments and values such as true friendship and hard work.

Finally, my sincere thanks are given to my boyfriend Filippo, my brother Matteo

and my parents, Laura and Danilo, who always love and encourage me. Without

their support, I could not have accomplished this experience.

X

1

1. Introduction

Machine learning is considered a specific field of artificial intelligence which has

the capability to learn from data. This is the reason why it is so commonly used in

very different fields of science, finance and industry nowadays.

In this work granular materials properties are used to learn and predict their

constitutive laws. In particular, Traction-separation laws are often highly simplistic

due to the difficulty to propose a proper model that captures the phenomenology.

By incorporating the micro-structural information via a Neural Network, more

realistic and complex constitutive laws can be generated automatically.

The goal of this thesis is to develop a Recurrent Neural Network that could predict

the constitutive laws for granular materials that are implemented. Different

information from multiple sub-scales can be used sequentially to generate

macroscopic prediction with a low computational and time cost.

The entire dataset is given by DEM simulations for granular materials but it can be

adjusted for all kind of materials. From rocks to sand, from concrete to steel.

The constitutive laws (traction-separation laws) obtained from homogenizing the

DEM responses are used as the data set for training and validating the neural

network models.

The code written in Python, trains and predicts the constitutive relationship that

depends on de dataset built in the previous simulations. The key of this thesis is to

evaluate the neural network in terms of error and loss. These parameters help to

understand if the model is predicting well the curves.

As for the implementation, the model was written with Keras, a high-level Python

deep learning library, to build the neural networks and complete the training

procedure. This model-level library allows for easy and fast prototyping of machine

learning models.

2

Three types of neural network have been developed, the Dense, LSTM and GRU.

Differences between the models as well as their performances will be presented

further in this work.

3

2. Elements of Machine Learning

Machine learning is an application of artificial intelligence (AI) that provides

systems the ability to automatically learn and improve from experience without

being explicitly programmed. Machine learning focuses on the development of

computer programs that can access data and use it learn for themselves.

The process of learning begins with observations or data, such as examples, direct

experience, or instruction, in order to look for patterns in data and make better

decisions in the future based on the examples provided. The primary aim is to allow

the computers learn automatically without human intervention or assistance and

adjust actions accordingly.

AI and machine learning algorithms aren’t new. The field of AI dates back to the

1950s. Arthur Lee Samuels, an IBM researcher, developed one of the earliest

machine learning programs — a self-learning program for playing checkers. In fact,

he coined the term machine learning. His approach to machine learning was

explained in a paper published in the IBM Journal of Research and Development in

1959.

Over the decades, AI techniques have been widely used as a method of improving

the performance of underlying code. In the last few years with the focus on

distributed computing models and cheaper compute and storage, there has been an

increase of interest in AI and machine learning that has led to a huge amount of

money being invested in start-up software companies.

Tom M. Mitchell, computer scientist at Carnegie Mellon University, introduced a

definition of Machine learning as:

“A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P, if its performance at tasks in T, as measured

by P, improves with experience E.”

Therefore, in general learning is about improving future performance using past

experience, reducing as more as possible human intervention or assistance. The

main three criteria about the machine learning in solving a problem are:

4

- It is possible to recognize a pattern;

- It isn’t possible to find a way to describe it mathematically;

- There are data that represents the pattern.

Machine learning tasks are usually classified in four different wide categories,

depending on the nature of the problem faced as in Fig 2.1:

- Supervised learning: through an unknown target function 𝑦 = 𝑓(𝑥) it is

possible to map the input x to output y.

- Unsupervised learning: the input given is not labelled and the goal of the

algorithm is to infer a function to describe hidden structure or pattern in the

input.

- Reinforcement Learning: the input and output do not need to be labelled. The

goal is to find a balance between exploration (of uncharted territory) and

exploitation (of current knowledge).

- Deep learning: it can be implemented both as supervised or unsupervised

technique with the development of neural network.

Figure 2.1 Machine learning categories

5

Figure 2.2 Scheme of Machine learning approaches

The problem faced in this thesis required a supervised learning approach, therefore

only this branch of machine learning will be discussed.

2.1. Supervised learning

Supervised learning typically begins with an established set of data and a certain

understanding of how those data are classified. Supervised learning is intended to

find patterns that can be applied to any analytics process. A dataset must be labelled

with features that define the meaning of data.

The goal of supervised learning is to use the inputs to predict the values of the

outputs. A set of variables might be denoted as inputs and they can be measured or

pre-set. These have some influence on one or more outputs.

In the statistical literature the inputs are often called the predictors and more

classically the independent variables. The outputs are called the responses, or

classically the dependent variables.

The aim of supervised machine learning is to build a model that makes predictions

based on evidence in the presence of uncertainty. A supervised learning algorithm

6

takes a known set of input data and known responses to the data (output) and trains

a model to generate reasonable predictions for the response to new data.

There are two types of Supervised Learning techniques: Regression and

Classification. Classification separates the data, Regression fits the data.

• Classification is a technique that aims to reproduce class assignments. It can

predict the response value and the data is separated into “classes”.

• Regression is a technique that aims to reproduce the output value.

Regression techniques predict continuous responses. Typical applications

include electricity load forecasting and algorithmic trading.

Starting from a set of examples the algorithm is guided to describe a model able to

predict the correct output. At this point the prediction model must be validated with

another known dataset independent from the training set. Only when the validation

phase is satisfactory the algorithm can be considered reliable for use on unknown

data.

Components of learning:

• Input: x

• Output: y

• Target function: f:X→Y where X is a set of all inputs and Y set of all outputs.

The target function is initially unknown.

• Data: (x1,y1), (x2 ,y2),…,(xn,yn)

• Hypothesis: g: X→Y is the formula that approximate the target function. It is

a known function and the goal is g to approximate well the target function f.

The learning algorithm is the step between the training examples of data and the

final hypothesis g. It chooses a formula for the final hypothesis between a set of

candidate formulas which is called Hypothesis Set H.

The learning model is formed by the hypothesis set and the learning algorithm.

The Hypothesis set is composed by a number of sets that can be chosen to be the

final hypothesis. The final hypothesis will be the function that will approximate in

7

the best way the unknown target function. Therefore, the mathematically definition

of the hypothesis set is:

𝐻 = {ℎ} , 𝑔 ∈ 𝐻

2.2. Perceptron

The perceptron is one of the simplest algorithms for supervised learning, introduced

by Rosenblatt in 1958. The perceptron can be considered the simplest Artificial

Neural Network algorithm because it is composed just by one artificial neuron. It

consists in binary classifications through a threshold function.

A perceptron takes a vector of real-valued inputs, calculates a linear combination

of these inputs, then outputs a 1 if the result is greater than some threshold and 0

otherwise. In figure 2.3 it is possible to see the scheme of a single layer perceptron,

Figure 2.3 Perceptron Scheme

This function maps its input x to an output value f(x):

𝑓(𝑥) = {
1 𝑖𝑓 𝑤 ∙ 𝑥 + 𝑏 > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where w is a vector of real-valued weights that determines the contribution of input

x to the perceptron output and b is the bias.

Linear models use the ‘signal’ as a linear sum described below:

8

𝑤𝑇𝑥 = ∑𝑤𝑖𝑥𝑖

𝑑

𝑖=1

The number of inputs to the perceptron is d. Learning a perceptron means choosing

values for the weights. It is possible to have a classification linear system like the

perceptron that uses the signal and uses the sign of it to make a binary decision.

ℎ(𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥)

Regression takes real values and uses them as outputs:

ℎ(𝑥) = 𝑤𝑇𝑥

So the simplest algorithm is the linear regression in which it puts the inputs in a

particular matrix form so it can give the optimal value of the weight vector.

𝑤 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦

The perceptron algorithm is also termed the single-layer perceptron, to distinguish

it from a multilayer perceptron, which is a misnomer for a more complicated neural

network.

2.3. Deep learning and Artificial Neural Network

A neural network attempts to mimic the way a human brain approaches problems

and uses layers of interconnected units to learn and infer relationships based on

observed data. A neural network can have several connected layers. When there is

more than one hidden layer in a neural network, it is sometimes called deep

learning. Neural network models are able to adjust and learn as data changes. Neural

networks are often used when data is unlabelled or unstructured.

The model was created with biological inspiration in order to replicate the human

ability of learning. The structure of biological neural network are neurons and

synapsis. Artificial Neural Network retained the biological concept of artificial

neurons, which receive input, combine the input with their internal state (activation)

and an optional threshold using an activation function, and produce output using an

output function

9

Figure 2.4Biological Neuron

The term ‘neural network’ has its origins in 1943 with McCulloch and Pitts in

attempts to find mathematical representations of information processing in

biological systems.

ANNs began as an attempt to exploit the architecture of the human brain to perform

tasks with specific algorithms.

An artificial neural network is composed by nodes. A node, also called a neuron or

Perceptron, is a computational unit that has one or more weighted input

connections, a transfer function that combines the inputs in some way, and an output

connection.

Nodes are then organized into layers to comprise a network. A single-layer artificial

neural network, also called a single-layer, has a single layer of nodes, as its name

suggests. Each node in the single layer connects directly to an input variable and

contributes to an output variable.

Neurons are connected to each other in various patterns, to allow the output of some

neurons to become the input of others. The network forms a directed, weighted

graph:

10

Figure 2.5 Artificial Neural Network

An Artificial neural network consists in large number of neurons, each of one is a

single perceptron. It is possible to model each neuron as a function that sum the

inputs with their weight and add a bias. The output will be based on an activation

function.

The activation function is a function which maps the arbitrary output of the logit

function to any specific range of values. It’s usually used to add some non-linearity

to our model. This allows the network to combine the inputs in more complex ways

and in turn provide a richer capability in the functions they can model. The bias

decides when a neuron stays inactive or in other words, it decided how high the

weighted sum needs to be for the neuron to be meaningfully active.

Deep learning is a specific method of machine learning that incorporates neural

networks in successive layers in order to learn from data in an iterative manner.

Deep learning is especially useful when trying to learn patterns from unstructured

data.

11

Deep learning is in other words, a complex neural network that are designed to

emulate how the human brain works in order to train computers to deal with

abstractions.

Deep learning algorithms are improved versions of artificial neural networks

algorithms. They use multiple layers of artificial neural networks to model the way

the human brain processes things like light and sound into vision and hearing. In

general, deep learning algorithms are built off of unsupervised learning run on

multiple levels of the data.

They are concerned with building much larger and more complex neural networks

and, as commented on above, many methods are concerned with very large datasets

of labelled analogue data, such as image, text. audio, and video.

The most popular deep learning algorithms are:

• Convolutional Neural Network (CNN)

• Recurrent Neural Networks (RNNs)

• Long Short-Term Memory Networks (LSTMs)

• Stacked Auto-Encoders

• Deep Boltzmann Machine (DBM)

• Deep Belief Networks (DBN)

Neural networks and deep learning are often used in image recognition, speech, and

computer vision applications. A neural network consists of three or more layers: an

input layer, one or many hidden layers, and an output layer as seen in Fig.2.5.

The dataset is ingested through the input layer. Then the data is modified in the

hidden layer and the output layers based on the weights applied to these nodes. The

typical neural network may consist of thousands or even millions of simple

processing nodes that are densely interconnected. The term deep learning is used

when there are multiple hidden layers within a neural network. Using an iterative

approach, a neural network continuously adjusts and makes inferences until a

specific stopping point is reached. Deep learning is a machine learning technique

12

that uses hierarchical neural networks to learn from a combination of unsupervised

and supervised algorithms. Deep learning is often called a sub-discipline of

machine learning. Typically, deep learning learns from unlabelled and unstructured

data. While deep learning is very similar to a traditional neural network, it will have

many more hidden layers. The more complex the problem, the more hidden layers

there will be in the model.

2.4. Structure of the network

The network is a composite function of multiple neurons in the form of layers.

Figure 2.6 Three layer neural network

A typical neural network consists of 3 types of layers as seen in Fig. 2.6.:

• The input layer: The given data points are fed into this layer. There can be

only 1 input layer. The number of neurons in this layer is equal to the number

of inputs.

• The hidden layers: These are the layers which try to find patterns in the

inputs to get the outputs we need. A network can have any number of hidden

layers. Nodes of this layer are not exposed to the outer world, they are the

13

part of the abstraction provided by any neural network. Hidden layer

performs all sort of computation on the features entered through the input

layer and transfer the result to the output layer.

• The output layer: It is the last layer of neurons that produces given outputs

for the program also known as the predictions of the network. The number

of neurons in this layer is equal to the number of values need to be predicted.

A traditional artificial neuron is composed of some weighted inputs, a

transformation function and activation function corresponding to the biological

neuron’s axon.

For each activation 𝑎𝑖
(2)

 in the second layer an independent vector of weight Θ𝑖
(1)

is used. Therefore, it is possible to write:

𝑎𝑖
(2)

= Θ𝑖
(1)

∙ 𝑥

Where Θ𝑖
(1)

is the row I of the matrixΘ
(1)

 that maps layer 1 to layer 2.

2.4.1. Training the network

It is possible to describe the relationship between the input variables and the output

variables as a complex mathematical function. For a given model problem, there

must exist a true mapping function that can properly map input variables to output

variables. Each neuron of the network has a unique set of weights and biases so it

is possible to train the network by using a general algorithm that optimize the

function.

The training phase is probably the most important one, as the final performances

depend on the predictive model built.

The dataset must be as more representative as possible of the task of the program.

The aim of this phase is trying to build a model able to fit the data provided, that is

predict the correct output for each input provided as best as possible.

Training a deep learning neural network model using stochastic gradient descent

with backpropagation involves choosing a number of components and

14

hyperparameters. An error function must be chosen, often called the objective

function, cost function, or the loss function. The loss function is used to estimate

the performance of a model with a specific set of weights on examples from the

training dataset.

The Gradient descent algorithm calculates the gradients of the function at a current

point that is the direction that minimize the function.

The search or optimization process requires a starting point from which to begin

model updates. The starting point is defined by the initial model parameters or

weights. Because the error surface is non-convex, the optimization algorithm is

sensitive to the initial starting point. As such, small random values are chosen as

the initial model weights, although different techniques can be used to select the

scale and distribution of these values. These techniques are referred to as “weight

initialization”.

Gradient descent is an optimization algorithm used to find the values of parameters

(coefficients) of a function (f) that minimizes a cost function (cost).It is best used

when the parameters cannot be calculated analytically (e.g. using linear algebra)

and must be searched for by an optimization algorithm.

Figure 2.7 Gradient Loss Algorithm scheme

Gradient Descent is a very generic optimization algorithm capable of finding

optimal solutions to a wide range of problems. The general idea of Gradient Descent

is to tweak parameters iteratively in order to minimize a cost function.

15

An important parameter in Gradient Descent is the size of the steps, determined by

the learning rate hyperparameter. If the learning rate is too small, then the algorithm

will have to go through many iterations to converge, which will take a long time.

Figure 2.8 Learning Rate

Neural networks are trained using stochastic gradient descent and require the choice

of a loss function when designing and configuring your model. In this thesis the

mean squared error is used as loss function as it is also the default function

• Mean Squared Error:

Mean squared error is calculated as the average of the squared differences

between the predicted and actual values. The result is always positive regardless

of the sign of the predicted and actual values and a perfect value is 0.0. The

squaring means that larger mistakes result in more error than smaller mistakes,

meaning that the model is punished for making larger mistakes.

𝑙𝑜𝑠𝑠 =
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖

𝑝)
2

𝑛

𝑖=1

2.4.2. Testing the network

Also known as Validation phase, its aim is to test the performances of the prediction

model during the training. For this phase it is usually used a particular dataset called

the test set which is composed by either input and outputs. This set of examples

should be independent from the testing set. In all the model of this thesis, the 10%

of the data are used as validation data.

16

During the testing the output are predicted but the algorithm does not use them to

improve its performances.

The performances are evaluated comparing the differences between the output of

the training set examples and the testing results.

2.4.3. Activation function

Activation function decides whether a neuron should be activated or not by

calculating weighted sum and further adding bias with it. The purpose of the

activation function is to introduce non-linearity into the output of a neuron.

As seen in Fig. 2.6, the activation function is used for each output giving

𝑎𝑖
(2)

= 𝜑(θ𝑖0
(1)

𝑥0, θ𝑖1
(1)

𝑥1, θ𝑖2
(1)

𝑥2, θ𝑖3
(1)

𝑥3, θ𝑖4
(1)

𝑥4)

or, in a compact way:

𝑎(2) = 𝜑(θ(1) ∙ 𝑥)

Each activation 𝑎𝑖
(2)

 is then mapped to 𝑎1
(3)

 through a second weight matrix θ(2). In

other words, it is possible to map the input x directly to the output a1
(3)

 using the

notation a1
(3)

= ℎΘ(𝑥) where Θ = {θ(1), θ(2)}.

Neural networks have neurons that work in correspondence of weight, bias and their

respective activation function. In a neural network, the weights must the updated

along with the biases of the neurons. The process back-propagation consists in the

update the weights and bias depending on the error at the output.

Activation functions make the back-propagation possible since the gradients are

supplied along with the error to update the weights and biases.

A neural network without an activation function is essentially just a linear

regression model. The activation function does the non-linear transformation to the

input making it capable to learn and perform more complex tasks.

A neural network is comprised of layers of nodes and learns to map examples of

inputs to outputs. For a given node, the inputs are multiplied by the weights in a

17

node and summed together. This value is referred to as the summed activation of

the node. The summed activation is then transformed via an activation function and

defines the specific output or “activation” of the node.

Linear function

The simplest activation function is referred to as the linear activation, where no

transform is applied at all. A network comprised of only linear activation functions

is very easy to train but cannot learn complex mapping functions. Linear activation

functions are still used in the output layer for networks that predict a quantity (e.g.

regression problems).

𝑓(𝑥) = 𝑥

Non-linear functions

Nonlinear activation functions are preferred as they allow the nodes to learn more

complex structures in the data. Traditionally, two widely used nonlinear activation

functions are the sigmoid and hyperbolic tangent activation functions.

- Sigmoid function:

It is a non-linear function also called as logistic function. It is usually used

in output layer of a binary classification, where result is either 0 or 1, as value

for sigmoid function lies between 0 and 1. The shape of the function for all

possible inputs is an S-shape from zero up through 0.5 to 1.0. For a long

time, through the early 1990s, it was the default activation used on neural

networks.

𝑓(𝑥) = 𝜎(𝑥) =
1

(1 + 𝑒−𝑥)

18

Figure 2.9 Sigmoid Function

- Tanh function:

It is also known as Tangent Hyperbolic function, it is non-linear and it is

generally used in hidden layers of neural network because its values range

between -1 to 1. In the later 1990s and through the 2000s, the tanh function

was preferred over the sigmoid activation function as models that used it

were easier to train and often had better predictive performance.

𝑓(𝑥) = tanh(𝑥) =
(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)

Figure 2.10 Tangent Hyperbolic Function

A general problem with both the sigmoid and tanh functions is that they saturate.

This means that large values snap to 1.0 and small values snap to -1 or 0 for tanh

and sigmoid respectively. Further, the functions are only really sensitive to changes

around their mid-point of their input, such as 0.5 for sigmoid and 0.0 for tanh.

19

The limited sensitivity and saturation of the function happen regardless of whether

the summed activation from the node provided as input contains useful information

or not. Once saturated, it becomes challenging for the learning algorithm to

continue to adapt the weights to improve the performance of the model.

Layers deep in large networks using these nonlinear activation functions fail to

receive useful gradient information. Error is back propagated through the network

and used to update the weights. The amount of error decreases dramatically with

each additional layer through which it is propagated, given the derivative of the

chosen activation function. This is called the vanishing gradient problem and

prevents deep (multi-layered) networks from learning effectively.

In order to use stochastic gradient descent with backpropagation of errors to train

deep neural networks, an activation function is needed that looks and acts like a

linear function, but is, in fact, a nonlinear function allowing complex relationships

in the data to be learned such as the RELU function.

- RELU

The Rectified linear unit is the most used non-linear function in Artificial

Neural Networks. It is implemented especially in hidden layers because its

computational cost is lesser then the previous functions. The rectified linear

activation function is a piecewise linear function that will output the input

directly if is positive, otherwise, it will output zero. The function is linear for

values greater than zero, meaning it has a lot of the desirable properties of a

linear activation function when training a neural network using

backpropagation. Yet, it is a nonlinear function as negative values are always

output as zero.

𝑓(𝑥) = {
0 𝑓𝑜𝑟 𝑥 ≤ 0
𝑥 𝑓𝑜𝑟 𝑥 > 0

20

Figure 2.11 RELU Function

In the last chapter of this thesis, there will be presented differences in terms of train

and validation loss between the sigmoid and the Relu function.

2.4.4. Back propagation algorithm

Backpropagation refers to a technique from calculus to calculate the derivative (e.g.

the slope or the gradient) of the model error for specific model parameters, allowing

model weights to be updated to move down the gradient. As such, the algorithm

used to train neural networks is also often referred to as simply backpropagation.

Backpropagation is a short form for "backward propagation of errors." It is a

standard method of training artificial neural networks. In 1961, the basics concept

of continuous backpropagation was derived in the context of control theory by J.

Kelly, Henry Arthur, and E. Bryson.

This method allows the network to modify the way how the steps are computed

making possible to adjust the output. In fact, it takes the error associated with a

wrong guess by a neural network and uses that error to adjust the neural network’s

parameters in the direction of less error.

Recalling the general structure of supervised learning, this is done through the

training data in the training step: knowing the output related to each input is possible

to evaluate the error with the respect to the output of the network. The

backpropagation step is the algorithm that allows to change the network trying to

reduce the computed error.

21

Backpropagation computes the gradient in weight space of a feedforward neural

network, with respect to a loss function.

Backpropagation simplifies the network structure by elements weighted links that

have the least effect on the trained network. It helps to assess the impact that a

given input variable has on a network output. The knowledge gained from this

analysis should be represented in rules. It takes advantage of the chain and power

rules allows backpropagation to function with any number of outputs.

General Algorithm

Given the following term definitions, it is possible to proceed to the explanation of

the algorithm phases.

wk
ij= weight for node j in layer lk for incoming node i

bk
i=bias for node i in layer lk

ak
i=product sum plus bias (activation) for node i in layer lk

ok
i=output for node i in layer lk

rk= number of nodes in layer lk

g= activation function for the hidden layer nodes

go= activation function for the output layer nodes.

The backpropagation algorithm proceeds in the following steps, assuming a suitable

learning rate α and random initialization of the parameters wij
k:

1) Forward phase: it consists in the calculation for each input-output

pair (𝑥𝑑⃗⃗ ⃗⃗ ⃗, 𝑦𝑑) of the parameters 𝑦𝑑̂ , 𝑎𝑗
𝑘𝑎𝑛𝑑 𝑜𝑗

𝑘 for each node j in layer k by

proceeding from layer 0, the input layer, to layer m, the output layer.

2) Backward phase: for each input-output pair (𝑥𝑑⃗⃗ ⃗⃗ ⃗, 𝑦𝑑), it must be calculated

the results
𝜕𝐸𝑑

𝜕𝑤𝑗𝑖
𝑘 for each weight 𝑤𝑗𝑖

𝑘 connecting the node 1 in layer k-1 to

node j by proceeding from layer m, the output layer, to layer 1, the input

layer.

- Evaluate the error term for the final layer 𝛿1
𝑚.

22

- Backpropagate the error terms for the hidden layers 𝛿𝑗
𝑘, working

backwards from the final hidden layer k = m-1.

- Evaluate the partial derivatives of the individual error Ed with

respect to wij
k.

3) Combinations of gradients: for each input-output pair
𝜕𝐸𝑑

𝜕𝑤𝑗𝑖
𝑘 the gradients

must be combined to get the total gradient
𝜕𝐸(𝑋,𝜃)

𝜕𝑤𝑗𝑖
𝑘 for the entire set of input-

output pairs .

4) Weights updating: according to the learning rate α and total gradient
𝜕𝐸(𝑋,𝜃)

𝜕𝑤𝑗𝑖
𝑘

it is possible to update the weights in the neural network.

There are two types of backpropagation Network: the static and recurrent back-

propagation. The static is one kind of backpropagation network which produces a

mapping of a static input for static output. It is useful to solve static classification

issues like optical character recognition.

Recurrent backpropagation is fed forward until a fixed value is achieved. After that,

the error is computed and propagated backward.

The main difference between both of these methods is: that the mapping is rapid in

static back-propagation while it is non-static in recurrent backpropagation.

Given a multilayer neural network with activation f, the backpropagation algorithm

can be summarised in these requirements:

• The training set

• The learning rate α

• The optimization function that defines the error E

• A termination condition, which can be a maximum number of steps or a

minimum error reduction rate.

The Dataset consists in input-output pairs (𝑥𝑖⃗⃗ ⃗, 𝑦𝑖⃗⃗⃗) where 𝑥𝑖⃗⃗ ⃗ is the input and 𝑦𝑖⃗⃗⃗ is the

desired output of the network on input 𝑥𝑖⃗⃗ ⃗.

The set of input-output pairs of size N is denoted

𝑋 = {(𝑥1⃗⃗ ⃗, 𝑦1⃗⃗⃗⃗), … , (𝑥𝑁⃗⃗ ⃗⃗ , 𝑦𝑁⃗⃗ ⃗⃗)}

23

𝑋 = {(𝑥1⃗⃗ ⃗, 𝑦1⃗⃗⃗⃗), … , (𝑥𝑁⃗⃗ ⃗⃗ , 𝑦𝑁⃗⃗ ⃗⃗)}

In backpropagation, the parameters of primary interest are 𝑤𝑖𝑗
𝑘 , the weight between

node j in layer lk and node i in layer lk-1, and bi
k, the bias for node i in layer lk. There

are no connections between nodes in the same layer and layers are fully connected.

An error function, E(X,θ), which defines the error between the desired output 𝑦1⃗⃗⃗⃗

and the calculated output 𝑦1⃗⃗⃗⃗ ̂ of the neural network on input 𝑥1⃗⃗ ⃗ for a set of input-

output pairs (𝑥𝑖⃗⃗ ⃗, 𝑦𝑖⃗⃗⃗)∈X and a particular value of the parameters θ.

The generic approach to minimizing the error is by gradient descent, called back-

propagation in this setting. Because of the compositional form of the model, the

gradient can be easily derived using the chain rule for differentiation.

Training a neural network with gradient descent requires the calculation of the

gradient of the error function E (X, θ) with respect to the weights 𝑤𝑖𝑗
𝑘 and biases bi

k.

Then, according to the learning rate η, each iteration of gradient descent updates the

weights and biases (collectively denoted θ) according to

𝜃𝑡+1 = 𝜃𝑡 − 𝛼
𝜕𝐸(𝑋, 𝜃𝑡)

𝜕𝜃

Where 𝜃𝑡 denotes the parameters of the neural network at iteration t in gradient

descent.

The derivation of the backpropagation algorithm is fairly straightforward. It follows

from the use of the chain rule and product rule in differential calculus. Application

of these rules is dependent on the differentiation of the activation function, one of

the reasons the heaviside step function is not used (being discontinuous and thus,

non-differentiable).

Assuming that the bias bk
i for node I in layer k is incorporated into the weights as

wk
0i with fixed output of ok-1

0=1 for node 0 in layer k-1. Therefore,

𝑤0𝑖
𝑘 = 𝑏𝑖

𝑘

The original formulation is the left part of this equation, while the right is the

simpler one:

24

𝑎𝑖
𝑘 = 𝑏𝑖

𝑘 + ∑ 𝑤𝑗𝑖
𝑘𝑜𝑗

𝑘−1

𝑟𝑘−1

𝑗=1

= ∑ 𝑤𝑗𝑖
𝑘𝑜𝑗

𝑘−1

𝑟𝑘−1

𝑗=0

Backpropagation attempts to minimize the following error function with respect to

the neural network's weights:

𝐸(𝑋, 𝜃) =
1

2𝑁
∑(𝑦𝑖̂ − 𝑦𝑖)

2

𝑁

𝑖=1

This would be possible by calculating for each weight the value of the error’s

derivative.

Since the error function can be decomposed into a sum over individual error terms

for each individual input-output pair, the derivative can be calculated with respect

to each input-output pair individually and then combined at the end (since the

derivative of a sum of functions is the sum of the derivatives of each function):

𝜕𝐸(𝑋, 𝜃)

𝜕𝑤𝑗𝑖
𝑘 =

1

𝑁
∑

𝜕

𝜕𝑤𝑗𝑖
𝑘

𝑁

𝑑=1

(
1

2
(𝑦𝑖̂ − 𝑦𝑖)

2) =
1

𝑁
∑

𝜕𝐸𝑑

𝜕𝑤𝑗𝑖
𝑘

𝑁

𝑑=1

In fact, Thus, for the purposes of derivation, the backpropagation algorithm will

concern itself with only one input-output pair. Once this is derived, the general form

for all input-output pairs in X can be generated by combining the individual

gradients. Thus, the error function in question for derivation is:

𝐸 =
1

2
(𝑦𝑖̂ − 𝑦𝑖)

2

The goal is to minimise the error so to study the partial derivative of the error

function.

𝜕𝐸

𝜕𝑤𝑗𝑖
𝑘 =

𝜕𝐸

𝜕𝑎𝑗
𝑘

𝜕𝑎𝑗
𝑘

𝜕𝑤𝑗𝑖
𝑘

where 𝑎𝑗
𝑘k is the activation (product-sum plus bias) of node j in layer k before it is

passed to the nonlinear activation function (in this case, the sigmoid function) to

generate the output. This decomposition of the partial derivative basically says that

25

the change in the error function due to a weight is a product of the change in the

error function E due to the activation 𝑎𝑗
𝑘 times the change in the activation 𝑎𝑗

𝑘 due

to the weight 𝑤𝑗𝑖
𝑘.

The definition of error is:

𝛿𝑗
𝑘 =

𝜕𝐸

𝜕𝑎𝑗
𝑘

The second term can be calculated by the previous equation so the derivative of the

error with respect of the weights is:

𝜕𝐸

𝜕𝑤𝑗𝑖
𝑘 = 𝛿𝑗

𝑘𝑜𝑖
𝑘−1

Therefore, the partial derivative of a weight is a product of the error term 𝛿𝑗
𝑘 at

node j in layer k, and the output 𝑜𝑖
𝑘−1of node i in layer k-1. This makes intuitive

sense since the weight 𝑤𝑗𝑖
𝑘 connects the output of node i in layer k-1 to the input of

node j in layer k in the computation graph.

Note that these partial derivatives don’t depend on a particular error function or

activation function.

The most common error 𝛿𝑗
𝑘 function is the mean squared error and the calculation

of the error proceed from the output to the input, that is why this algorithm is called

back-propagation or backwards propagations of errors.

The phase in which the neural network calculates the output precedes the backward

phase for every iteration of gradient descent. In the forward phase, activations 𝑎𝑗
𝑘

and outputs 𝑜𝑗
𝑘 will be remembered for use in the backwards phase. Once the

backwards phase is completed and the partial derivatives are known, the

weights (and associated biases 𝑏𝑗
𝑘 = 𝑤𝑜𝑗

𝑘) can be updated by gradient descent.

This process is repeated until a local minimum is found or convergence criterion is

met.

For the final layer, the error is:

26

𝛿1
𝑚 = 𝑔𝑜

′ (𝑎1
𝑚)(𝑦𝑑̂ − 𝑦𝑑)

For the hidden layers the error is:

𝛿𝑗
𝑘 = 𝑔′(𝑎𝑗

𝑘) ∑ 𝑤𝑗𝑙
𝑘+1𝛿𝑙

𝑘+1

𝑟𝑘+1

𝑙=1

Combining the errors derivatives for each input-output pair it is possible to write

the formula for updating the weights such as:

Δ𝑤𝑖𝑗
𝑘 = −α

𝜕𝐸(𝑋, 𝜃)

𝜕𝑤𝑗𝑖
𝑘 = −α

1

𝑁
∑

𝜕𝐸𝑑

𝜕𝑤𝑗𝑖
𝑘

𝑁

𝑑=1

27

3. Traction separation law

Traction separations laws are specific constitutive laws in the theory of the

cohesive zone model.

Cohesive zone models are based on cohesive interactions that approximate

nonlinear fracture behaviour. These models are used to study stress singularities in

linear elastic fracture mechanics and to approximate nonlinear material separation

phenomena.

Figure 3.1 Zoom of the cohesive zone

The Hillerborg model, also known as Cohesive zone model (Fig. 3.1), assumes that

the stress displacement behaviour (σ-δ) observed in the damage zone of a tensile

specimen is a material property.

Fracture formation is studied as a gradual phenomenon in which separation of the

surfaces involved in the crack takes place across an extended crack tip, or cohesive

zone, and is resisted by cohesive tractions.

The Cohesive Zone Model does not represent any physical material but describes

the cohesive forces which occur when material elements are being pulled apart.

Cohesive interactions are generally a function of displacement separation and

approximate progressive nonlinear fracture behavior. If the displacement jump is

greater than a characteristic length (𝛿𝑛), complete failure occurs because it doesn’t

have more load-bearing capacity.

28

Figure 3.2 (a) shows a schematic stress-displacement curve, and 3.2 (b) illustrates

the idealization of the damage zone ahead of a growing crack. As the surfaces

(known as cohesive surfaces) separate, traction first increases until a maximum is

reached, and then subsequently reduces to zero which results in complete

separation.

Cohesive zone model describes also crack nucleation and pervasive cracking

through various time and length.

One of the fundamental aspects in cohesive zone modeling is the definition of the

traction-separation relationship across fracture surfaces, which approximates the

nonlinear fracture process.

In general, the initiation and continuation of crack growth depends on several

factors, such as bulk material properties, body geometry, crack geometry, loading

distribution, loading rate, load magnitude, environmental conditions, time effects

(such as viscoelasticity or viscoplasticity), and microstructure.

There are three different ways of applying a force that can create a crack as shown

in Fig 3.3:

● Mode I fracture: It is a opening mode where a tensile stress normal to the

plane of the crack is applied;

● Mode II fracture: A in-plane shear stress is applied so It’s considered a

sliding mode;

● Mode III fracture: It’s a tearing mode where a shear stress is applied parallel

to the crack front and also to the plane of the crack (Out-of-plane shear).

Figure 3.2 (a) Stress-displacement response and (b) Damage zone ahead a crack.

29

Figure 3.3 Mode I, II, II as different ways to apply a force that lead to a crack

Three families of traction-separation laws can be identified:

1. Elastic (reversible) models in which the t-w law derives from a potential

function and as a consequence cannot correctly describe unloading

processes.

2. Elasto-plastic models in which the formulation parallels that of classical

continuum elastoplasticity , but vectorial relationship between tractions and

separations are ser instead of stress and strain; since the stiffness of the crack

just after initiation is nominally infinite, in the limit its behavior should be

rigid-plastic, and these models are characterized by a very stiff unloading

response.

3. Damage-based models obtained by exporting classical continuum damage

approaches to vectorial, rather than tensorial, relationships, characterized by

displaying linear unloading to the origin.

Cohesive traction-separation relationships can be studied as nonpotential-based

models or potential-based models.

Nonpotential models are easy to develop because they don’t require symmetry but

they don’t consider all separation paths. Potential-based models depend on the

potential function, which is a characteristic of the fracture behavior and it is related

to the fact that for close processes the work is non-negative.

The traction is in fact the first derivative of the fracture energy potential (Ψ) and

is considered as cohesive interaction over fracture surfaces. The second derivative

of the energy potential is the constitutive relationship (material tangent modulus).

30

The main problem with potential-based models is that they display limitations,

especially for mixed-mode problems, because of the boundary conditions

associated with cohesive fracture.

Cohesive traction-separation relationships may be obtained by employing

theoretical, experimental and computational techniques.

The hypothesis of the cohesive constitutive laws can be summarized in:

• The Traction-separation law is independent from any body’s rigid

motion.

• The work needed to create a new surface has a finite value of the fracture

energy Γ0.

• The mode I fracture energy is different from mode II

• There is a characteristic length, beyond that there is the failure, so the

material has no more bearing capacity.

• Traction in the fracture surface generally decreases to zero, while

separation increases under conditions softening, which determines a

negative stiffness.

• It may exists a potential for cohesive constitutive laws and the energy

dissipation during the unloading and reloading phases is independent of

a potential.

3.1. Displacement based models

The traction-separation law (TSL) contains two parameters, the maximum traction

sustainable by the element T0 , and a maximum opening, the separation δ0, at which

the element totally fails.

This law describes the relationship between the actual traction T and the separation

distance δ as a function T(δ). This function can have different shapes depending on

the material properties they consider.

31

Figure 3.4 different types of curves such as(a) cubic polynomial function, (b) exponential function and (c)

trilinear law.

Beside the two parameters T0 and δ0, a third quantity can be defined, that is the

energy dissipated by the cohesive element at total failure Γ0.

It is calculated by the integral of the traction separation law and It is equal to the

area subtended to the curve.

Γ0 = ∫ 𝑇(𝛿)𝑑𝛿
𝛿0

0

Effective displacements models are used for monotonic function so that fracture

energy is constant regardless of the fracture mode. They cannot demonstrate the

differences between positive separations and the negative ones. In fact, when the

separation is growing, also the cohesive traction increases.

3.1.1. One-dimensional models

Tvergaard developed a displacement-based model in which he introduced the

quantities 𝑇̅, Δ̅ in relation with the normal and tangential component of the tractions

as:

𝑇𝑛 =
𝑇̅(Δ̅)

Δ̅

Δ𝑛

𝛿𝑛
, 𝑇𝑡 =

𝑇̅(Δ̅)

Δ̅
𝛼𝑒

Δ𝑡

𝛿𝑡

Where 𝛿𝑛 𝑎𝑛𝑑 𝛿𝑡 are respectively the normal ad tangent characteristic lengths in

relation with the fracture energy; 𝛼𝑒 is a nondimensional constant related with

mode-mixity.

32

It is possible to describe an effective displacement which is nondimensional in

relation with Δ𝑛𝑎𝑛𝑑 Δ𝑡,the normal and tangential separations described as

Δ̅ = √(
Δ𝑛

𝛿𝑛
)
2

+ (
Δ𝑡

𝛿𝑡
)
2

Tvergaard used a cubic polynomial function as in Fig. 3.4 (a) for the effective

traction T̅ that describes the shape of the traction-separation relation.

𝑇̅(Δ̅) =
27

4
𝜎𝑚𝑎𝑥 Δ̅(1 − 2Δ̅ + Δ̅2)

This equation corresponds to the normal cohesive traction proposed by Needleman.

In mode I, where Δ𝑡 = 0, the normal cohesive traction will be 𝑇𝑛 = 𝑇̅(Δ̅) and for

mode II in which Δ𝑛 = 0, the tangent component of the traction will be 𝑇𝑡 =

𝛼𝑒𝑇̅(Δ̅).

In conclusion we can see that the constant 𝛼𝑒 si a scaling factor between the two

components of the cohesive traction.

There are other traction-separation relationships based on different kind of

functions. Tvergaard and Hutchinson develop a trapezoidal function based on

potential, in which they changed the definition of the 𝛼𝑒 parameter as

𝛼𝑒 =
𝛿𝑛

𝛿𝑡

They defined the potential in relation to the displacement:

Ψ = 𝛿𝑛 ∫ 𝑇̅(𝛿̅) 𝑑𝛿̅
Δ̅

0

The cohesive traction vector is the first derivative of the potential so it is possible

to express it as:

𝑇𝑛 =
∂Ψ

∂Δ̅

∂Δ̅

∂Δ𝑛
=

𝑇̅(Δ̅)

Δ̅

Δ𝑛

𝛿𝑛
, 𝑇𝑡 =

∂Ψ

∂Δ̅

∂Δ̅

∂Δ𝑡
=

𝑇̅(Δ)̅̅ ̅

Δ̅

𝛿𝑛

𝛿𝑡

Δ𝑡

𝛿𝑡

This will result as follow:

33

∂𝑇𝑛

∂Δ𝑡
=

∂𝑇𝑡

∂Δ𝑛

This one dimensional potential leads to a symmetric system with an exact

differential but it cannot distinguish different fracture energies along the normal

and tangential directions.

Rose et al1. developed a one-dimensional energy given as:

Ψ = 𝛿𝑛 ∫ 𝑒𝜎𝑚𝑎𝑥𝛿̅𝑒𝛿̅ 𝑑𝛿̅ = 𝑒𝜎𝑚𝑎𝑥𝛿𝑛[1 − (1 + Δ̅)𝑒−Δ̅]
Δ̅

0

Ortiz and Pandolfi develop another traction-separation relation keeping the same

definition of 𝛼𝑒 as the Tvergaard and Hutchinson model. They used a linear

function without an initial slope.

They defined the cohesive traction vector in relation with the free energy density

per unit area.

𝑇𝑛 =
𝑇̃(Δ̃)

Δ̃
Δ𝑛, 𝑇𝑡 =

𝑇̃(Δ̃)

Δ̃
Δ𝑡𝛽𝑒

2

These two are the components of the Traction vector:

𝑻 =
𝑇̃(Δ̃)

Δ̃
(Δ𝑛𝐧𝑛 + 𝚫𝑡𝛽𝑒

2)

Where 𝐧𝑛 is a normal unit vector to a cohesive surface and 𝚫𝑡is the in-plane

tangential separation vector which is equal to 𝚫𝑡𝐧𝑡where 𝐧𝑡is the tangential unit

displacement vector.

They introduced the non-dimensional constant: 𝛽𝑒 =
𝛿𝑛

𝛿𝑡

Furthermore, 𝛥̃ is now a dimensional component of 𝛥𝑛𝑎𝑛𝑑 𝛥𝑡and it is related

to Δ̅ as follow:

1 The model has been used to investigate crack propagation of C-300 steel, functionally graded

materials, and asphalt concrete.

34

Δ̅ =
Δ̃

𝛿𝑛

Ortiz and Pandolfi wrote that the initial elastic slope in the function equation might

be a severe restriction for time step explicit integration.

Instead Geubelle and Baylor2 developed a linear function model with the initial

slope as the linear softening model. They introduced and internal residual strength

variable called 𝐷𝑠 which is related to the effected displacement as

𝐷𝑠 = min(𝐷𝑚𝑖𝑛, 𝑚𝑎𝑥(0, 1 − 𝛥̅))

The bilinear cohesive model divide traction in the normal and tangential

components as shown in these two equations:

𝑇𝑛 = 𝜎𝑚𝑎𝑥
𝐷𝑠

1−𝐷𝑠

𝛥𝑛

𝛿𝑛
, 𝑇𝑡 = 𝜏𝑚𝑎𝑥

𝐷𝑠

1−𝐷𝑠

𝛥𝑡

𝛿𝑡

 𝐷𝑚𝑖𝑛 is a critical value that indicates when the cohesive traction reaches the

cohesive strength. In other words, it is related to the effective displacement because

if Δ̅ < 1 − 𝐷𝑚𝑖𝑛, then the cohesive traction increases following a line as the

separation increases too. If Δ̅ > 1 − 𝐷𝑚𝑖𝑛there is the softening condition in which

the two components of the Traction are written differently as follow:

𝑇𝑛 = 𝜎𝑚𝑎𝑥
1−Δ̅

Δ̅

𝛥𝑛

𝛿𝑛
, 𝑇𝑡 = 𝜏𝑚𝑎𝑥

1−Δ̅

Δ̅

𝛥𝑡

𝛿𝑡

Where it is possible to substitute 𝛼𝑒 = 𝜏𝑚𝑎𝑥/𝜎𝑚𝑎𝑥 that leads to the equation

𝑇̅ = 𝜎𝑚𝑎𝑥(1 − Δ̅)

2 They used this model for studying the failure of polycrystalline brittle materials and viscoelastic

asphalt concrete.

35

3.1.2. Three dimension model

Figure 3.5 local coordinate system (a)two-dimensions and (b) three-dimensions cohesive separations.

It is possible to extend the previous equations to a 3D problem in which Δ1is an

opening mode while Δ2and Δ3are two in-plane shear modes.

So it is possible to define the effective displacement as combination of the three

dimensions:

Δ̅ = √(
Δ1

𝛿1
)
2

+ (
Δ2

𝛿2
)
2

+ (
Δ3

𝛿3
)
2

Consequently, the traction components will be:

𝑇1 =
T̅(Δ̅)

Δ̅

𝛥1

𝛿1
 , 𝑇2 =

T̅(Δ̅)

Δ̅
𝛼2

𝛥2

𝛿2
, 𝑇3 =

T̅(Δ̅)

Δ̅
𝛼3

𝛥3

𝛿3

Where 𝛼2 𝑎𝑛𝑑 𝛼3 are the constant without dimension associated with the mode-

mixity.

3.2. Potential-based models

Potential-based models have been demonstrated to have less limitations than the

displacement-based models3 because the potential is function of the two

components of the separation vector instead of the effective displacement.

3 As shown in ‘Cohesive Zone Models: A Critical Review of Traction-Separation Relationships

Across Fracture Surfaces’ by Kyoungsoo and Park (2011).

36

The potential can be divided into a normal and tangential part. Each one of its

components can be derived into their related traction component. Potential-based

models are valid under the condition of monotonic separation paths. Thus,

unloading/reloading relations should be addressed independently in order to

describe energy dissipations, which include fatigue damage.

Needleman in 1987 developed for the traction separation function a cubic

polynomial and a linear function to determine the tangential cohesive traction. He

introduced a polynomial formula for a debonding potential, which is related to just

the normal and tangential separations (Δn , Δt) along the interface. Then, by deriving

the potential, the interfacial normal and tangential tractions will be obtained.

Ψ(Δ𝑛, Δ𝑡) =
27

4
𝜎𝑚𝑎𝑥𝛿𝑛 {

1

2
(
Δ𝑛

𝛿𝑛
)
2

[1 −
4

3
(
Δ𝑛

𝛿𝑛
) +

1

2
(
Δ𝑛

𝛿𝑛
)
2

]

+
1

2
𝛼𝑠 (

Δ𝑡

𝛿𝑛
)
2

[1 − 2 (
Δ𝑛

𝛿𝑛
) + (

Δ𝑛

𝛿𝑛
)
2

]}

Where 𝛼𝑠is the maximum traction carried by the interface under the mode I fracture

condition, 𝛿𝑛is the characteristic length and 𝜎𝑚𝑎𝑥 is the shear stiffness parameter.

It is possible to determine the tractions in the only case when Δ𝑛 < 𝛿𝑛 i.e. when the

characteristic length is greater than the normal separation. In the other case where

Δ𝑛 > 𝛿𝑛, there is not cohesive interactions.

𝑇𝑛 =
𝜕Ψ

𝜕Δ𝑛
=

27

4
𝜎𝑚𝑎𝑥 {(

Δ𝑛

𝛿𝑛
) [1 − 2 (

Δ𝑛

𝛿𝑛
) + (

Δ𝑛

𝛿𝑛
)
2

] + 𝛼𝑠 (
Δ𝑡

𝛿𝑛
)
2

[(
Δ𝑛

𝛿𝑛
) − 1]}

𝑇𝑡 =
𝜕Ψ

𝜕Δ𝑡
=

27

4
𝜎𝑚𝑎𝑥 {𝛼𝑠 (

Δ𝑡

𝛿𝑛
) [1 − 2 (

Δ𝑛

𝛿𝑛
) + (

Δ𝑛

𝛿𝑛
)
2

]}

The cohesive strength 𝜎𝑚𝑎𝑥 is reached by Tn when Δ𝑡 = 0 and Δ𝑛 =
𝛿𝑛

3
.

This traction separation function is associated with the mode I fracture properties

such as the cohesive strength and the fracture energy because the area under the

curve when Δ𝑡 = 0 is the same as the fracture energy 𝜙𝑛.

37

Freed and Banks-Sills in 2008 started from Needleman’s potential-based model

with a cubic polynomial function. Their potential function is related to the mode

mixity or phase angle (𝜃). The effective displacement and phase angle are:

Δ̃ = √Δ𝑛
2 + Δ𝑡

2, 𝜃 = tan−1
Δ𝑡

Δ𝑛

The potential function is:

Ψ(Δ̃, θ) =
27

4
t0
∗(θ)Δ̃ [

1

4
(

Δ̃

δc
∗(θ)

)

3

−
2

3
(

Δ̃

δc
∗(θ)

)

2

+
1

2
(

Δ̃

δc
∗(θ)

)]

In this equation t0
∗ depends on the maximum cohesive strength and the phase angle

as follow:

t0
∗(𝜃) = 𝜎𝑚𝑎𝑥√1 + 𝑡𝑎𝑛2 𝜃

δ𝑐
∗ depends also to the characteristic length:

δ𝑐
∗(𝜃) = 𝛿𝑛√1 + tan2 𝜃

The last two definitions have meaning in the only case when Δ̃ < δ𝑐
∗(𝜃) because if

the effective displacement is greater than δ𝑐
∗(𝜃), then the cohesive tractions will be

zero. It is also possible to write this potential equation in terms of normal and

tangential separations.

In this way in mode I case, when the tangential separation is equal to zero, this

potential is identical to the one from Needleman and in both their functions the

tangential separations are quadratic.

The two tractions components will be derived not in term of effective displacement

but regarding the separation components as follow, considering the case when Δ̃ <

δ𝑐
∗(𝜃):

𝑇𝑛 =
𝜕Ψ

𝜕Δ𝑛
=

27

4
𝜎𝑚𝑎𝑥 {(

Δ𝑛

𝛿𝑛
) [(

Δ𝑛

𝛿𝑛
)
2

− 2(
Δ𝑛

𝛿𝑛
) + 1] +

1

2
(
Δ𝑡

𝛿𝑛
)
2

[(
Δ𝑛

𝛿𝑛
) −

4

3
]}

𝑇𝑡 =
𝜕Ψ

𝜕Δ𝑡
=

27

4
𝜎𝑚𝑎𝑥 {(2

Δ𝑡

𝛿𝑛
) [

1

4
(
Δ𝑛

𝛿𝑛
)
2

−
2

3
(
Δ𝑛

𝛿𝑛
) +

1

2
]}

38

Like Needleman’s model, this one uses the cubic polynomials for the normal

traction function and the tangential cohesive traction is linear.

There are other three models that are based on the concept of the universal binding

energy developed by Rose et al.

They studied an atomistic potential that connects metallic binding energies and

lattice parameters. The potential, called the universal binding energy, is defined as:

Ψ = −(1 + 𝑙) exp(−𝑙)

Note that this function is an exponential and l is the scaled separation.

After this definition, Rice and Wang obtained a new relationship for traction

separation law for large tangential separation. Again, the Traction is derived from

the potential in which E0 is the initial modulus or one-dimensional tensile straining

of the interface layer:

𝑇𝑛(Δ𝑛) = 𝐸0 (
Δ𝑛

𝛿𝑛
) 𝑎𝑥𝑝 (−𝛼𝑛

Δ𝑛

𝛿𝑛
)

Needleman developed another potential based on the universal binding energy

maintaining the linear relationship for shear interaction as in his previous model.

Ψ(Δ𝑛, Δ𝑡) =
9

16
𝜎𝑚𝑎𝑥𝛿𝑛 {1 − [1 + 𝑧 (

Δ𝑛

𝛿𝑛
) −

1

2
𝛼𝑠 (𝑧

Δ𝑡

𝛿𝑛
)
2

] exp (−
zΔ𝑛

𝛿𝑛
)}

In fact, it is possible to obtain the tangential traction by deriving this potential and

see that the traction is linear with respect to the tangential separation.

Then Needleman created an exponential-periodic potential, which is function of

normal and tangential separations. The exponential-periodic potential is

Ψ(Δ𝑛, Δ𝑡) =
𝜎𝑚𝑎𝑥𝑒𝛿𝑛

𝑧
{1 − [1 + (

𝑧Δ𝑛

𝛿𝑛
) − 𝛽𝑠𝑧

2 [1 − cos (
2𝜋Δ𝑡

𝛿𝑡
)]] exp (−

zΔ𝑛

𝛿𝑛
)}

Where z=16e/9 and 𝛽𝑠 is a constant. The normal and tangential tractions are given

by:

𝑇𝑛 =
𝜕Ψ

𝜕Δ𝑛
= 𝑒𝜎𝑚𝑎𝑥 {(

𝑧Δ𝑛

𝛿𝑛
) − 𝛽𝑠𝑧

2 [1 − cos (
2𝜋Δ𝑡

𝛿𝑡
)]} exp (−

zΔ𝑛

𝛿𝑛
)

39

𝑇𝑡 =
𝜕Ψ

𝜕Δ𝑡
= 𝑒𝜎𝑚𝑎𝑥 {2𝜋𝛽𝑠𝑧 (

𝛿𝑛

𝛿𝑡
) sin (

2𝜋𝛥𝑡

𝛿𝑡
)} exp (−

zΔ𝑛

𝛿𝑛
)

In the condition where Δ𝑡 = 0 and Δ𝑛 =
𝛿𝑛

𝑧
 the normal cohesive strength 𝜎𝑚𝑎𝑥 is

reached. The normal traction has an exponential softening behavior, while the

tangential traction illustrates periodic behavior. There fracture properties are valid

just for mode I parameters like the fracture energy and the cohesive strength. This

model based on exponential-periodic potential, doesn’t comprehend the mode II so

it is unable to describe general model based on mixed-mode fracture behaviours.

The generalization of this model was developed by Beltz and Rice who described

the normal traction as an exponential function and the tangential traction was

demonstrated by Peierls as a periodic function.

𝑇𝑛 = [𝐵(Δ𝑡)Δ𝑛 − 𝐶(Δ𝑡)] exp (
−Δ𝑛

𝛿𝑛
)

𝑇𝑡 = 𝐴(Δ𝑛) sin (
2𝜋Δ𝑡

𝛿𝑡
)

Where 𝐴(Δ𝑛), 𝐵(Δ𝑡) and 𝐶(Δ𝑡) are function that satisfy the following boundary

conditions.

There are two main notes about this model:

First of all the potential is an exact differential and second, the constant C (0) is

equal to zero because the normal traction is zero when the two components of the

displacements are zero.

So, in this case we have:

𝐶(0) = 0

The area under a cohesive interaction represents the fracture energy so the normal

traction of a cleavage fracture depends on the surface energy 𝛾𝑠 and the tangential

traction of a dislocation nucleation procedure is associated to the unstable stacking

energy 𝛾𝑢𝑠 as follow:

40

2𝛾𝑠 = ∫ 𝑇𝑛(Δ𝑛, 0)𝑑Δ𝑛

∞

0

= 𝜙𝑛

𝛾𝑢𝑠 = ∫ 𝑇𝑡(0, Δ𝑡)𝑑Δ𝑡 =

𝛿𝑡
2

0

𝜙𝑡

The two traction components satisfy the boundary condition when Δ𝑛 = ∞ that

corresponds to the complete normal separation. This is why fracture surfaces cannot

transfer tractions when there is complete separation along the normal direction.

In other words,

𝑇𝑛(∞, Δ𝑡) = 0 and 𝑇𝑡(∞, Δ𝑡) = 0

The generalized exponential-periodic potential of Beltz and Rice is:

Ψ = 2𝛾𝑠 + 2𝛾𝑠 exp (
−Δ𝑛

𝛿𝑛
) {[𝑞 + (

𝑞 − 𝑟

1 − 𝑟
)
Δ𝑛

𝛿𝑛
] sin2 (

𝜋Δ𝑡

𝛿𝑡
) − [1 +

Δ𝑛

𝛿𝑛
]}

Having the fracture energy and the cohesive strengths, it is possible to obtain the

characteristic length parameters as follows:

𝛿𝑛 =
𝜙𝑛

𝑒𝜎𝑚𝑎𝑥

𝛿𝑡 =
𝜋𝜙𝑡

𝜏𝑚𝑎𝑥

Another potential-based model was introduced by Xu and Needleman by changing

the periodic function for tangential traction to an exponential expression. This is

useful to characterize the interfacial shear failure. This model is called the

exponential-exponential potential and it is shown as:

Ψ(Δ𝑛, Δ𝑡) = 𝜙𝑛

+ 𝜙𝑛 exp (−
Δ𝑛

𝛿𝑛
) {[1 − 𝑟 + (

Δ𝑛

𝛿𝑛
)]

1 − 𝑞

𝑟 − 1

− [𝑞 +
𝑟 − 𝑞

𝑟 − 1

Δ𝑛

𝛿𝑛
] exp (−

Δ𝑡
2

𝛿𝑡
2)}

The interfacial cohesive tractions as the potential’s derivative are:

41

𝑇𝑛 =
𝜙𝑛

𝛿𝑛
exp (−

Δ𝑛

𝛿𝑛
) {

Δ𝑛

𝛿𝑛
exp(−

Δ𝑡
2

𝛿𝑡
2) +

1 − 𝑞

𝑟 − 1
[1 − exp (−

Δ𝑡
2

𝛿𝑡
2)] [𝑟 −

Δ𝑛

𝛿𝑛
]}

𝑇𝑡 =
𝜙𝑛

𝛿𝑛

2𝛿𝑛

𝛿𝑡

Δ𝑡

𝛿𝑡
[𝑞 +

𝑟 − 𝑞

𝑟 − 1

Δ𝑛

𝛿𝑛
] exp (−

Δ𝑛

𝛿𝑛
) exp(−

Δ𝑡
2

𝛿𝑡
2)

Once again, as the previous model, it is possible to relate the fracture energies to

the cohesive strength:

𝜙𝑛 = 𝜎𝑚𝑎𝑥𝑒𝛿𝑛

𝜙𝑡 = √𝑒/2𝛿𝑡𝜏𝑚𝑎𝑥

Where:

q is a constant and it is the ratio of the mode II fracture energy 𝜙𝑡 to the mode I

fracture energy𝜙𝑛, i.e.,

𝑞 =
𝜙𝑡

𝜙𝑛

r is another nondimensional constant that depends on Δ𝑛
∗ which is the value of the

normal separation when the normal traction is equal to zero.

𝑟 =
Δ𝑛

∗

𝛿𝑛

The condition when q=1 is reached when both the fracture energy of mode I and II

are the same. In this case the effect of the r parameter disappears and the potential

is simplified as

Ψ(Δ𝑛, Δ𝑡) = 𝜙𝑛 − 𝜙𝑛 [1 + (
Δ𝑛

𝛿𝑛
)] exp (−

Δn

δn
) exp (−

Δt
2

δt
2)

The normal and tangential tractions not only demonstrate the exponentially

decreasing softening but represent the different fracture parameters in mode I and

II.

This exponential-exponential model has several limitations due to the introduction

of parameters that are difficult to calculate as explained:

42

- The model contains this fracture parameter Δ𝑛
∗ that is difficult to obtain

experimentally. In some cases, it is not a problem because it can disappear

when q=1.

- This model in fact cannot be applied if fracture energy related to mode I is

different to mode II fracture energy.

- It cannot control the elastic behaviour so it is difficult to do numerical

simulations of cohesive surface elements.

The model doesn’t correspond to reality when it reaches the final crack opening

width because it would be infinite due to the exponential function.

PPR, General Unified Potential-Based Model

This general model was introduced to bypass the limitations of the exponential-

exponential model so it is formulated with physical parameters and boundary

conditions.

The parameters used are:

- Fracture energy

- Cohesive strength

- Shape

- Initial slope.

The boundary conditions that need to be satisfied by the potential-based model are

as follow:

- Complete normal failure when𝑇𝑛(𝛿𝑛, Δ𝑡) = 0 or 𝑇𝑛(Δ𝑛, 𝛿𝑡̅) = 0

- Complete tangential failure when 𝑇𝑡(Δ𝑛, 𝛿𝑡) = 0 or 𝑇𝑡(𝛿𝑛
̅̅ ̅, Δ𝑡) = 0

- Mode I fracture energy ∫ 𝑇𝑛(Δ𝑛, 0)𝑑Δ𝑛
𝛿𝑛

0
= 𝜙𝑛

- Mode II fracture energy ∫ 𝑇𝑡(0, Δ𝑡)𝑑Δ𝑡 =
𝛿𝑡

0
𝜙𝑡

- Normal cohesive strength 𝑇𝑛(𝛿𝑛𝑐, 0) = 𝜎𝑚𝑎𝑥 where
𝜕𝑇𝑛

𝜕Δ𝑛
|Δ𝑛=𝛿𝑛𝑐

= 0

- Tangential cohesive strength 𝑇𝑡(0, 𝛿𝑡𝑐) = 𝜏𝑚𝑎𝑥 where
𝜕𝑇𝑡

𝜕Δ𝑡
|Δ𝑡=𝛿𝑡𝑐

= 0

43

As introduced above, in this model two shape parameters characterize various

material softening responses. The potential of the PPR model defined as potential

of mixed-mode cohesive fracture can be written as:

Ψ(Δ𝑛, Δ𝑡) = min(𝜙𝑛, 𝜙𝑡)

+ [Γ𝑛 (1 −
Δ𝑛

𝛿𝑛
)
𝛼

(
𝑚

𝛼
+

Δ𝑛

𝛿𝑛
)
𝑚

+ 〈𝜙𝑛 − 𝜙𝑡〉] 𝑋 [Γ𝑛 (1 −
|Δ𝑡|

𝛿𝑡
)

𝛽

(
𝑛

𝛽
+

|Δ𝑡|

𝛿𝑡
)
𝑛

+ 〈𝜙𝑛 − 𝜙𝑡〉]

Where 〈. 〉 is the Macaulary bracket defined as:

〈𝑥〉 = {
0, (𝑥 < 0)
𝑥, (𝑥 ≥ 0)

The traction vector is obtained by deriving the potential. The potential’s gradient

is:

Tn(Δ𝑛, Δ𝑡) =
Γ𝑛

𝛿𝑛
[𝑚 (1 −

Δ𝑛

𝛿𝑛
)
𝛼

(
𝑚

𝛼
+

Δ𝑛

𝛿𝑛
)
𝑚−1

− 𝛼 (1 −
Δ𝑛

𝛿𝑛
)
𝛼−1

(
𝑚

𝛼
+

Δ𝑛

𝛿𝑛
)
𝑚

] 𝑋 [Γ𝑡 (1 −
|Δ𝑡|

𝛿𝑡
)

𝛽

(
𝑛

𝛽
+

|Δ𝑡|

𝛿𝑡
)
𝑛

+ 〈𝜙𝑛 − 𝜙𝑡〉]

Tt(Δ𝑛, Δ𝑡) =
Γ𝑡

𝛿𝑡
[𝑛 (1 −

|Δ𝑡|

𝛿𝑡
)
𝛽

(
𝑛

𝛽
+

|Δ𝑡|

𝛿𝑡
)

𝑛−1

− 𝛽 (1 −
|Δ𝑡|

𝛿𝑡
)
𝛽−1

(
𝑛

𝛽
+

|Δ𝑡|

𝛿𝑡
)

𝛽−1

] 𝑋 [Γ𝑛 (1 −
Δ𝑛

𝛿𝑛
)
𝛼

(
𝑚

𝛼
+

Δ𝑛

𝛿𝑛
)
𝑚

+ 〈𝜙𝑛 − 𝜙𝑡〉]
Δ𝑡

|Δ𝑡|

The normal and tangential tractions are defined within the cohesive interaction

(softening) region where the fracture surface transfers cohesive normal and

tangential tractions. All the characteristic parameters are the results of the boundary

conditions.

44

The normal and tangential final crack opening widths (𝛿𝑛, 𝛿𝑡) are the characteristic

lengths and they are written as:

𝛿𝑛 =
𝜙𝑛

𝜎𝑚𝑎𝑥
𝛼𝜆𝑛(1 − 𝜆𝑛)

𝛼−1 (
𝛼

𝑚
+ 1) (

𝛼

𝑚
𝜆𝑛 + 1)

𝑚−1

𝛿𝑡 =
𝜙𝑡

𝜏𝑚𝑎𝑥
𝛽𝜆𝑡(1 − 𝜆𝑡)

𝛽−1 (
𝛽

𝑛
+ 1) (

𝛽

𝑛
𝜆𝑡 + 1)

𝑛−1

The two energy, related to mode I and II are constants and when they are not equal

they result as:

Γ𝑛 = (−𝜙𝑛)
〈𝜙𝑛−𝜙𝑡〉
𝜙𝑛−𝜙𝑡 (

𝛼

𝑚
)
𝑚

Γ𝑡 = (−𝜙𝑡)
〈𝜙𝑡−𝜙𝑛〉
𝜙𝑡−𝜙𝑛 (

𝛽

𝑛
)
𝑛

Geometrically 𝜆𝑡 and 𝜆𝑛are the initial slope indicators and they are calculated as

the ratio between the critical crack opening width and the final crack opening width.

𝛼 𝑎𝑛𝑑 𝛽 are the shape parameters that provide choice when finding the right

softening shape.

The constant exponents m and n are respectively:

𝑚 =
𝛼(𝛼 − 1)𝜆𝑛

2

(1 − 𝛼𝜆𝑛
2)

 𝑎𝑛𝑑 𝑛 =
𝛽(𝛽 − 1)𝜆𝑡

2

(1 − 𝛽𝜆𝑡
2)

45

4. Granular material properties

Many geological materials, such as shale, mudstone, carbonate rock, limestone and

rock salt are multi-porosity porous media in which pores of different scales may co-

exist in the host matrix. When fractures propagate in these multi-porosity materials,

these pores may enlarge and coalesce and therefore change the magnitude and the

principal directions of the effective permeability tensors.

Soils are granular materials so their behaviour is determined by the forces between

particles. These includes forces due to boundary loads (transmitted through the

skeleton), particle forces such as gravitational and contact level forces such as

capillarity.

Their static and dynamic behaviors are very complicated due to the complex

interactions between particle and particle, particle and the liquid.

It is possible to understand the problem starting from a particle-scale because the

granular material is discrete in nature rather than continuous.

Granular materials consist of grains in contact and surrounding voids. The

micromechanical behaviour of granular materials is therefore inherently

discontinuous and heterogeneous. In order to understand the mechanical behaviour

of granular material from a microscopic point of view, it is important to understand

the spatial distribution and orientation of grains and their contact conditions.

To really understand the mechanics of granular materials, particular interest goes to

the particle rotation, contact moments as well as interparticle forces and contact

displacement.

The intrinsic complexity of these materials can be divided into two different types

of properties. Macroscopically, tensorial variables (stress tensor, strain tensor,

fabric tensor) are commonly used based on Representative Volume Element (RVE),

while vectors variables (contact force, contact displacement, contact normal) are

adopted at particle-scale.

46

A tensor, called Fabric tensor, is introduced to characterize, in a tensor form, the

spatial distribution of microscopic quantities such as particle orientation, contact

normal and it can be used to derive constitutive equations.

4.1. Representative Volume Element

Figure 4.1 Representative volume element for granular material

Representative Volume Element (RVE) is a statistical representation of typical

material properties.

RVE is defined by the representation of the material to be used to determine the

corresponding effective properties for the homogenised macroscopic model with a

size which is small enough compared to the macroscopic body and large enough

compared to the microstructural size. An RVE should contain sufficient information

about the microstructure and be a good representation of a continuum.

A typical RVE is composed by particles and voids among them. Three basics

conditions are essential:

- RVE must be microscopically large enough, containing a sufficient number

of particles and voids in order to get as many microscopic quantities as

possible.

- It should be macroscopically small enough to be considered a spatial point.

- The characteristic length does not change over time and space.

47

The choice of the RVE or its modelling determines the first difference between

various homogenization theories. In particular, two classes of homogenization

processes can be distinguished:

1. Homogenization methods for periodic media: The basic hypothesis in this

case is that the medium may be described by a periodic number. The RVE

is, in this case, the unit cell. With this approach, the treatment is completely

deterministic. These models can account for precise local information such

as the shape and orientations of inclusions.

2. Homogenization methods for media with randomly distributed phases: in

this case it is not possible to give a deterministic description of the

microstructure, so a statistical and probabilistic treatment becomes

appropriate.

Considering a constitutive law t (δ,q) that predicts the traction vector t based on the

history of the displacement jump δ over a cohesive-frictional surface with the

normal direction vector being n.

The internal variables in q, if the cohesive surface is composed of a thin layer of

granular materials, can be chosen among a large set of geometrical measures on

micro-structural attributes such as porosity, coordination number and fabric tensor.

4.2. Microstructure Characterization

Figure 4.2 RVE and coordination number

48

Coordination number

The coordination number is defined as the number of active contacts for each

particle, where the normal contact force needs to be larger than zero. Taking the

particle O0 in the middle of a representative volume element in Fig. 4.2 for an

example, six contacts including c1, c2, c3, c4, c5 and c6 can be found, which means

its coordination number is 6.

For granular materials consisting of numerous particles, the averaged coordination

number is usually adopted to characterize their connectivity and expressed as

𝐶𝑛 =
𝑁𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

Where 𝑁𝑐 is the number of particle contacts and 𝑁𝑏 is the number of the particles

in the RVE. The coordination number is greater than zero.

4.3. Macroscopic Characterization

Porosity

Porosity Ф is a fraction of the total soil volume that is taken up by the pore space.

It is the ratio between the void and the total volume of a representative element

(RVE) of the material layer.

Ф =
𝑉𝑣𝑜𝑖𝑑

𝑉𝑡𝑜𝑡𝑎𝑙

Therefore, it is a single-value quantification of the amount of space available to

fluid within a specific body of soil. It can range between 0 and 1, typically for soils

is 0.3-0.7.

Fabric tensor

The fabric is a tensorial quantity which is used to characterize the internal structure

of an assembly of grains. For a single particle its definition can be written as4:

4 Stake (1982) defined fabric tensor for disc or spherical assemblies.

49

𝐴𝑓 =
1

𝑁𝑐𝑜𝑛𝑡𝑎𝑐𝑡
∑ 𝑛𝑐 ⊗ 𝑛𝑐

𝑁𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑐=1

Where 𝑛𝑐 is the contact normal unit vector of a particle contact c, c=1, 2,…, Ncontact

in the RVE that is pointing outwards in the direction of the contact as c1O1 in Fig.

4.2.

Chantawarangul (1993) indicated that the fabric tensor can also be represented by

appropriate distribution density function of contact normal:

𝐴𝑓 = ∫ 𝐸(Ω) 𝑛𝑖
𝑐𝑛𝑗

𝑐 𝑑Ω
Ω

Where 𝐸(Ω) =
(1+𝑎𝑖𝑗

𝑟 𝑛𝑖
𝑐𝑛𝑗

𝑐)

4 𝜋
 with 𝑎𝑖𝑗

𝑟 = 𝑎𝑗𝑖
𝑟 , 𝑖 ≠ 𝑗.

The principal values of tensors 𝑎𝑖𝑗
𝑟 namely 𝑎1

𝑟 , 𝑎2
𝑟 𝑎𝑛𝑑 𝑎3

𝑟 are called coefficients of

principal contact normal anisotropy or coefficients of contact anisotropy for brevity.

These coefficients are related to the density of contact normal in principal contact

directions. For an isotropic distribution of contacts, coefficients of contact

anisotropy are zero and 𝐸(Ω) =
1

4 𝜋
. A positive coefficient term implies a contact

density in the corresponding principal direction which is greater than that expected

of an isotropic assembly. Conversely, 𝑎𝑖
𝑟 < 0 implies that contact density is

reduced below the density associated with an isotropic sample. The degree of fabric

anisotropy can be represented by the second invariant 𝑎𝑑
𝑟 written as:

𝑎𝑑
𝑟 = √

3𝑎𝑖𝑗
𝑟 𝑎𝑖𝑗

𝑟

2

The strong fabric tensor is:

𝐴𝑠𝑓 =
1

𝑁𝑠𝑡𝑟𝑜𝑛𝑔𝑐𝑜𝑛𝑡𝑎𝑐𝑡
∑ 𝑛𝑐 ⊗ 𝑛𝑐

𝑁𝑠𝑡𝑟𝑜𝑛𝑔𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑐=1

50

Where 𝑛𝑐 is the normal unit vector of a strong particle contact (having a

compressive normal force greater than mean contact force) c, c=1,2,…, Ncontact in

the RVE.

Contact force and stress

Deformation of granular materials is accompanied by significant changes in the

magnitudes of contact forces. The inter-particle forces can be decomposed into the

direction normal and tangent to the contact planes, namely normal contact force

𝑓𝑛
𝑐 and tangential contact force 𝑓𝑡

𝑐, as shown in Fig. 4.2.

The normal contact force and tangential contact force can be expressed as:

𝐹𝑖𝑗
𝑛 =

1

4𝜋
∫ 𝑓𝑛̅̅̅̅
Ω

(Ω)𝑛𝑖𝑛𝑗𝑑Ω , 𝐹𝑖𝑗
𝑡 =

1

4𝜋
∫ 𝑓𝑖

𝑡̅̅ ̅
Ω

(Ω)𝑛 𝑛𝑗𝑑Ω

Where 𝑓𝑛̅̅̅̅ and 𝑓𝑖
𝑡̅̅ ̅ are the density distribution function defined as:

𝑓𝑛̅̅̅̅ (Ω) = 𝑓0
𝑛̅̅̅̅ (1 + 𝑎𝑖𝑗

𝑛 𝑛𝑖𝑛𝑗) 𝑓𝑖
𝑡̅̅ ̅(Ω) = 𝑓0

𝑛̅̅̅̅ [𝑎𝑖𝑗
𝑡 𝑛𝑗 − (𝑎𝑘𝑙

𝑡 𝑛𝑘𝑛𝑙)]

Starting from the contact force definition, it is possible to express the stress tensor

as:

𝜎𝑖𝑗 =
1

𝑉
∑𝑓𝑗

𝑐𝑙𝑖
𝑐

𝑁𝑐

𝑐=1

Contact displacement and strain

The contact displacements are generally characterized in terms of the translations

of the particle centres, and the rigid-body rotations of the grains around their centre.

It is possible to have displacement from macro-deformations of the RVE model in

DEM simulations.

51

5. Data Generation

5.1. Discrete Element Method

The dataset used to develop the neural network was generated by a DEM

simulation. The discrete element method proposed by Cundall and Strack (1979),

also known as DEM is a very powerful numerical tool to simulate soils and other

granular materials. The DEM modeling involves specifying the equations of motion

for a system of discrete bodies and solving the resulting equations.

The mechanical response of granular materials in DEM is governed by the contacts

between constitutive particles and between particles and the boundaries. So that the

physical quantities that control these interactions (particle rotations, contact

orientations, contact forces etc.) can easily be measured, which is almost impossible

to capture in a laboratory test.

The DEM model gives a look at what is inside of the material and is capable to

understand the fundamental particle interactions underlying the complex, macro-

scale response. the DEM tries to solve large-displacement problems in

geomechanics that are These problems cannot easily be modeled using more

widespread continuum approaches such as the finite element method (FEM).

Figure 5.1 Scheme of an RVE

Two particles might establish a new interaction, which consists in:

52

1. Detecting collision between particles;

2. Creating new interaction and determining its properties (such as stiffness);

they are either precomputed or derived from properties of both particles.

Then for already existing interactions, the following steps are:

• Strain evaluation;

• Stress computation based on strains;

• Force application to particles in interaction.

The DEM software YADE5 is an open-source software, which is developed based

on the C++ & Python programming languages. The calculation method is similar

to the one proposed by Cundall and Strack (1979).

The contact laws governing the interactions between the particles are defined by

the parameters illustrated in Figure 5.2.

Figure 5.2 Contact laws governing the interactions by Cundall and Strack (1979)

The main parameters are the normal stiffness coefficient 𝑘𝑛 (normal direction to

the contact plane), the tangential stiffness coefficient 𝑘𝑡 (tangent direction to the

contact plane) and the microscopic friction angle 𝜑𝑐. No tensile force is

contemplated.

The inter-particle contact behaviour is governed by an elastic force-displacement

relation in the normal contact direction as:

Δ𝐹𝑛 = 𝑘𝑛Δ𝛿𝑐 𝑎𝑛𝑑 𝐹𝑛 ≥ 0

5 YADE is the abbreviation of “Yet Another Dynamic Engine” by Šmilauer et al. (2010)

53

Where 𝛿𝑐 is the penetration depth between two particles in contact. The tangent

force instead is calculated at each time step like:

Δ𝐹𝑡 = 𝑘𝑡Δ𝑢𝑡 𝑎𝑛𝑑 |𝐹𝑡| ≤ 𝐹𝑛 tan𝜑𝑐

For every time step, the tangential component of contact force must be corrected

such that it does not exceed the shear strength of the contact. Then the resultant

force and moment applied are updated with the two components of the contact

force.

The phases of the DEM simulation are in loop as the following steps:

1. Update list of contacts

2. Calculate contact force

3. Calculate force and moments applying on each particle

4. Calculate the acceleration of each particle

5. Update the velocity and position of particles.

The numerical techniques used in DEM can be divided into two categories as soft

sphere (molecular dynamics) and hard sphere (event driven) approaches. As in

figure 5.3, the soft sphere model in which the particle is considered “soft”, allows

the penetration between particles because it considers the deformation at the contact

point.

Figure 5.3 Model of the soft sphere

Figure 5.4 Model of the hard sphere

54

The principle behind the soft sphere method is to solve the equations governing the

linear and angular dynamic equilibrium of contacting particles for every time step.

In fact, the word soft may cause some misunderstanding; in the simulation, soft

particles are actually rigid, however they are allowed to have overlap at the contact

points. Consequently, physical actions are realized only when spheres enter each

other.

In the YADE code, the soft sphere model is adopted so particle contact is allowed

as seen in Fig. 5.5. When the model involves disk or sphere particles such as p and

q, the contact overlap is calculated for a 3D model as:

𝛿𝑐 = 𝑅𝑝 + 𝑅𝑞 − √(𝑥𝑝 − 𝑥𝑞)
2
+ (𝑦𝑝 − 𝑦𝑞)

2
+ (𝑧𝑝 − 𝑧𝑞)

2

Where R is the radius of the single particle and x, y, z are the centroidal coordinates

for each sphere.

Figure 5.5 Overlap between p and q sphere

At the end, if the quantity 𝛿𝑐 is positive the force transmitted will be a compression,

otherwise the contact will be classified as inactive.

Creating interaction between particles

55

The exact collision detection depends on the geometry of individual particles but in

Yade terminology, the Collider creates only potential interactions.

It is possible to refer to kinematic variables of the contacts as ‘strains’, although at

this scale it is also common to speak of ‘displacements’.

Basic DEM interaction defines two stiffnesses: normal stiffness KN and shear

(tangent) stiffness KT. It is desirable that KN be related to fictitious Young’s

modulus of the particles’ material, while KT is typically determined as a given

fraction of computed KN. The
𝐾𝑇

𝐾𝑁
 ratio determines macroscopic Poisson’s ratio of

the arrangement, which can be shown by dimensional analysis: elastic continuum

has two parameters (E and ν) and basic DEM model also has 2 parameters with the

same dimensions KN and
𝐾𝑇

𝐾𝑁
; macroscopic Poisson’s ratio is therefore determined

solely by
𝐾𝑇

𝐾𝑁
 and macroscopic Young’s modulus is then proportional to KN and

affected by
𝐾𝑇

𝐾𝑁
.

Normal stiffness

The algorithm commonly used in Yade computes normal interaction stiffness as

stiffness of two springs in serial configuration with lengths equal to the sphere radii

as seen in Fig. 5.2:

Figure 5.6 Series of 2 springs representing normal stiffness of contact

It is possible to define the distance 𝑙 = 𝑙1 + 𝑙2 where 𝑙𝑖 are the distances between

contact point and sphere centres that are initially equal to the sphere radius. Change

56

of distance between the sphere centres Δ𝑙 is distributed onto deformations of both

spheres Δ𝑙 = Δ𝑙1 + Δ𝑙2 proportionally to their compliances. Displacement

change Δ𝑙𝑖 generates force 𝐹𝑖 = KiΔ𝑙𝑖, where 𝐾𝑖 assures proportionality and has

physical meaning and dimension of stiffness; 𝐾𝑖 is related to the sphere material

modulus 𝐸𝑖.

5.2. Generated data

Figure 5.7 Scheme of the RVE simulation

In each RVE simulation, the displacement boundary conditions are prescribed as

shown in Fig. 5.7. The size of the DEM RVE is 10 cm x 10 cm x 5 cm, while the

averaged grain diameter is 0.5 cm. A set of displacement jump paths {un, us} is

applied to the microscale RVE, and the tractions {tn, ts} are homogenized at each

incremental deformation step.

Before the displacement-driven grain-scale simulation begins, the DEM assembly

must be in the stress state consistent to the macroscopic boundary condition. This

is achieved by subjecting the DEM assembly with the right amount of shear and

normal tractions along the boundaries.

Discrete Element Method (DEM) has been used to study the micro-mechanisms of

granular materials. By considering their discrete nature, DEM calculates the

interactions between each contact at every time-step. This is capable of telling how

particles become arranged in space to form an internal structure.

In fact, we start from microstructure characterization in order to understand the

macro-scale problem.

57

Table 5.1 Parameters chosen for the simulation

The parameters chosen for the simulation are:

Table 5.2 Properties of the particles

Parameter of the particle Value

Young’s Modulus E 0.5 GPa

Poisson’s ratio v 0.3

Friction angle 30°

Density 2600 kg/m3

Mean diameter 5 mm

The gravel particle is assembled into a cube of 2000 spheres generated randomly.

Then the program generates random loading cases changing the angle of the

displacement applied to the RVE from 0° to 90°. In total the cases are 200.

The load cases consist in pairs of numbers that are the sin and cosine of the angle

of the vector applied.

For each input parameters, the programs set up different assemblies that represent

different connectivity between the particles. So, they will have different behaviours.

The material represented with this simulation is gravel and the forces applied are

maximum 10 MPa. At the end the data as well as the microscopic properties will

be collected in a csv file.

58

59

6. Program design

The steps to implement a neural network are described in the following paragraphs

as functional parts of the code. Each phase has an infinite number of variables and

ways to write it. The next subchapters focus only in the features developed in this

thesis and do not comprehend all of the models that can possibly be implemented

in a neural network.

6.1. Python setup

The code object of this thesis is written in Python language. Python is a high-level,

general-purpose programming language created by Guido van Rossum and first

released in 1991.

Anaconda is a distribution of Python programming language for scientific

computing (data science, machine learning applications, large-scale data

processing, predictive analytics, etc.), that aims to simplify package management

and deployment.

The version 3.7 of Python is installed in the Anaconda environment.

Figure 6.1 Python logo

Figure 6.2 Anaconda logo

60

Anaconda navigator is a graphical user interface that allows to manage conda

packages and launch applications. The code was written through the Spyder

application.

Spyder interface software was installed in Anaconda. It allows to program easily in

the Python language.

The Spyder interface includes an editor with an editor with syntax highlighting,

introspection, code completion as seen in the Figure 6.3 below:

Figure 6.3 Python interface

For the code object to this thesis, various libraries were integrated in the Spyder

environment to help the scientific programming in Python.

Below a brief explanation of each library will be explained:

TensorFlow

This is an open-source library for dataflow and differentiable programming. It was

developed by Google Brain for internal use in Google but then released in 2015.

With this library it is possible to create models for neural networks from training to

testing a dataset and allows to import the Keras library.

Keras

61

Keras is an open-source library released in 2015. It is designed to enable fast

experimentation with deep neural networks. In Keras, it is possible to assemble

layers to build models. A model is usually a graph of layers and it helps to build a

simple, fully-connected network such as a multi-layer perceptron.

Keras contains numerous implementations of commonly used neural-network

building blocks such as layers, objectives, activation functions, optimizers, and a

host of tools to make working with image and text data easier to simplify the coding

necessary for writing Deep Neural Network code. It supports other common utility

layers like dropout, the activation function and batch normalization.

NumPy

This library allows to create arrays and calculate heavy operations with matrix and

arrays.

Pandas

It is a software library for data manipulation and analysis. In particular, it offers

data structures and operations for manipulating numerical tables and time series.

Pandas is mainly used for machine learning in form of dataframes. Pandas allow

importing data of various file formats such as csv, excel etc.

Scikit-learn

It features various classification, regression and clustering algorithms including

support vector machines.

MatPlotlib

This is a Python 2D plotting library which produces publication quality figures in a

variety of hardcopy formats and interactive environments across platforms.

6.2. Load Data

The first step is to define the functions and classes used in this programme. In order

to load the data set it is necessary to use the NumPy library.

62

The Dataset is created by a DEM simulation explained in the previous chapter and

the data describes features of a granular material.

All of the input variables that describe each load case are numerical. This makes it

easy to use directly with neural networks that expect numerical input and output

values, and ideal a simple neural network in Keras. The problem with implementing

other neural network is that usually it is necessary to start from pictures or data that

are not necessarily numbers. So the problem is how to convert every input in

mathematical terms.

The code will be learning a model to map rows of input variables (X) to an output

variable (y), which we often summarize as y = f(X).

The variables can be summarized as follows:

Input Variables (X): selected columns of the csv file.

Output Variables (y): selected columns of the csv file.

Once the CSV file is loaded into memory, it is possible to split the columns of data

into input and output variables.

The data will be stored in a 2D array where the first dimension is rows and the

second dimension are columns, e.g. [rows, columns].

6.3. Define Keras Model

The model created with keras is a Sequential model that defined by sequence of

layers.

The first thing to do is to ensure the input layer has the right number of input

features.

63

Figure 6.4 line of the code with implementation of layers

Some of the features of the neural network have to be part of the trial and error

process to find the best fit for the model.

Generally, the network must be large enough to capture the structure of the problem.

Furthermore, it is not possible to calculate the most efficient number of layers or

the number of nodes to use per layer in an artificial neural network to address a

specific real-world predictive modeling problem.

The number of layers and the number of nodes in each layer are model

hyperparameters that must be specified.

In this thesis three types of models will be developed as described in the following

subchapters: The Dense, the LSTM and GRU algorithms.

6.3.1. Dense

The definition of the Dense algorithm is:

“Dense implements the operation: output = activation(dot(input, kernel) + bias)

where activation is the element-wise activation function passed as the activation

64

argument, kernel is a weights matrix created by the layer, and bias is a bias vector

created by the layer (only applicable if use_bias is True).”6

It is a regular densely-connected neural network layer. The model dense is used for

few and monotonic data where there is no history to train and predict such as curves

of loading and unloading.

Therefore it is commonly used for elastic materials that are independent from time.

In the code written, it is possible to see how bad the algorithm predicts the non-

monotonic data.

The function has several arguments as follows in the model:

• Units: Positive integer, dimensionality of the output space. In this case the

first to layers has 40 units and the third has just 2.

• Activation: activation function to use. In this case the sigmoid activation

function is applied.

• Input_dim: positive integer, is the dimension of the input equal to 2.

• Dropout: it consists in randomly setting a fraction rate of input units to 0 at

each update during training time, which helps prevent overfitting.

6 From Keras documentation, https://keras.io/layers/core/

65

6.3.2. LSTM

Figure 6.5 A LSTM neuron with input, output and forget gate to process sequence with memory effect

LSTM also known as Long Short-Term Memory, is a technique commonly used in

computational linguistics. It was first introduced by Hochreiter and Schmidhuber

in 1997 to create a neural network capable of having memory. LSTM uses memory

blocks and a new entity called “gate” is introduced to control the flow of

information and the state of the block as shown in Fig. 6.5

A LSTM neuron possesses a state of the memory cells at time t Ct. In this process

there are some variables like xt that is the value of the input sequence at time t and

ht is the value of the output sequence at time t.

The signal through the forget gate is given by

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ 𝑥𝑡 + 𝑈𝑓 ∙ ℎ𝑡−1 + 𝑏𝑓)

Where 𝜎 is the sigmoid function 𝜎(𝑥) =
1

1+exp(−𝑥)
, 𝑊𝑓 𝑎𝑛𝑑 𝑈𝑓 are weight matrices,

𝑏𝑓 the bias vector for the forget gate.

The new information to be stored in the cell state is given by the signal it through

the input gate

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ 𝑥𝑡 + 𝑈𝑖 ∙ ℎ𝑡−1 + 𝑏𝑖)

66

Where 𝑊𝑖 𝑎𝑛𝑑 𝑈𝑖 are weight matrices and 𝑏𝑖 is the bias vector for the input gate.

The new candidate value cell state is given by a tanh layer:

𝐶𝑡̃ = tanh(𝑊𝐶𝑥𝑡 + 𝑈𝐶ℎ𝑡−1 + 𝑏𝐶)

where tanh is the hyperbolic tangent function tanh(𝑥) =

exp(𝑥)−exp (−𝑥)

exp(𝑥)+exp (−𝑥)
,𝑊𝐶𝑎𝑛𝑑 𝑈𝐶 are weight matrices, bC is bias vector.

The old cell state Ct−1 is updated by the above forget and input information, i.e.,

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶𝑡̃

Finally, for the output signal

ℎ𝑡 = 𝑜𝑡tanh (𝐶𝑡)

where ot is the signal through the output gate

𝑜𝑡 = 𝜎(𝑊0𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)

where Wo and Uo are weight matrices, bo is bias vector for the output gate.

LSTM neural network accepts sequences of history values of the physical

parameters as inputs.

The building and training of the LSTM data-driven model contains four steps.

Firstly, the data of numerical simulations are stored in comma-separated values

(CSV) file and are imported by an open-source Python data analysis library Pandas.

The data are split into input features and outputs.

Each sequence of input and output is re-scaled to be within [0, 1] using the

MinMaxScaler class in sklearn.preprocessing toolkit . The input data structure that

can be processed by the LSTM model must be an array of dimension 3, where the

entries for the first dimension are the samples, the second dimension are the time

history steps and the last dimension are the input features.

After the neural network is built, the training parts of the epochs starts. It is possible

feed the LSTM model with the preprocessed input and output data. The back-

propagation algorithm will modify the weights of the neural network iteratively and

67

the loss will be reduced to a small number (about 5 * 10-5 in this work). The learning

rate can be reduced when the convergence becomes slow.

During back propagation, recurrent neural networks suffer from the vanishing

gradient problem. Gradients are values used to update a neural networks weight.

The vanishing gradient problem is when the gradient shrinks as it back propagates

through time. If a gradient value becomes extremely small, it doesn’t contribute too

much learning.

This type of algorithm as well as the less common GRU is used for a large amount

of data- the csv file contains more than 16 thousand rows that correspond to the

total amount of data. Because they have memory, they are able to learn and predict

well plastic material in general such as the object of this thesis.

In opposite with the Dense layer, they have memory and take account of the

timesteps regarding the input data.

6.3.3. GRU

The Gated Recurrent unit, also known as GRU, was introduced by Cho et al. in

2014 in order to solve the vanishing gradient problem. It can be considered as a

standard recurrent neural network and a variation of the LSTM algorithm.

To solve the vanishing gradient problem of a standard RNN, GRU uses, so-called,

update gate and reset gate. Basically, these are two vectors which decide what

information should be passed to the output. The special thing about them is that

they can be trained to keep information from long ago, without washing it through

time or remove information which is irrelevant to the prediction.

In order to explain the mathematics behind the process, a single unit will be

examined from the following recurrent neural network:

68

Figure 6.6 neural network with Gated recurrent unit

Figure 6.7 Gated Recurrent Unit

In Fig 6.7 it is possible to see different symbols that are used in this network such

as:

Update Gate

The update gate helps the model to determine how much of the past information

(from previous time steps) need to be passed along to the future.

69

It is the left part of Fig. 6.7, where the update gate zt is calculated for time step t

using the formula:

𝑧𝑡 = 𝜎(𝑊(𝑧)𝑥𝑡 + 𝑈(𝑧)ℎ𝑡−1)

When 𝑥𝑡 is plugged into the network unit, it is multiplied by its own weight 𝑊(𝑧).

The same goes for ℎ𝑡−1which holds the information for the previous t-1 units and

is multiplied by its own weight 𝑈(𝑧). Both results are added together and a sigmoid

activation function is applied to squash the result between 0 and 1.

Reset gate

Essentially, this gate is used from the model to decide how much of the past

information to forget. It can be expressed as:

𝑟𝑡 = 𝜎(𝑊(𝑟)𝑥𝑡 + 𝑈(𝑟)ℎ𝑡−1)

This formula is the same as the one for the update gate. The difference comes in the

weights and the gate’s usage. As the previous step, looking and the next step of Fig.

6.7, the blue line represents ℎ𝑡−1 while the purple line is 𝑥𝑡. These two parameters

must be multiplied themselves for the corresponding weights, sum the results and

apply the sigmoid function.

Current memory content

A new memory content is introduced that will use the reset gate to store the relevant

information from the past. It is calculated as follows:

ℎ𝑡
′ = tanh(𝑊𝑥𝑡 + 𝑟𝑡⨀𝑈ℎ𝑡−1)

The input 𝑥𝑡 is multiplied with his weight W and ℎ𝑡−1 with U. Then the Hadamard

(element-wise) product is calculated between the reset gate 𝑟𝑡 and 𝑈ℎ𝑡−1. That will

be determine what to remove from the previous time steps. The neural network will

learn to assign 𝑟𝑡 vector close to 0, forgetting about the previous time steps, focusing

only on the last sentences.

Then the results of the two previous steps are summed up and the nonlinear

activation function tanh is applied.

70

Final memory at current time steps

As the last step, the network needs to calculate vector ℎ𝑡 which holds information

for the current unit and passes it down to the network. This is done by the update

gate that determines what to collect from the current memory content ℎ𝑡
′ and from

the previous step ℎ𝑡−1.

ℎ𝑡 = 𝑧𝑡⨀ℎ𝑡−1 + (1 − 𝑧𝑡)⨀ℎ𝑡
′

The model can learn to set the vector 𝑧𝑡 close to 1 and keep a majority of the

previous information. Since 𝑧𝑡 will be close to 1 at this time step, 1-𝑧𝑡 will be close

to 0 which will ignore big portion of the current content that is irrelevant for the

prediction.

6.4. Compile Keras Model

Once that the model has been defined, it can be compiled. Compiling the model can

be easy by using several efficient numerical libraries such as TensorFlow. The

backend automatically chooses the best way to represent the network for training

and making predictions to run on the hardware.

When compiling, some additional properties useful to better predict the data are

required and must be specified. Training a network means finding the best set of

weights to map inputs to outputs in our dataset. In fact, these parameters help the

network to improve itself.

A loss function must be defined in order to evaluate a set of weights and also the

optimizer, which is used to search through different weights for the network and

any optional metrics that are likely to collect and report during training.

In this case, we will use mean squared error as the loss argument. The Mean

Squared Error, or MSE, loss is the default loss to use for regression problems.

Mathematically, it is the preferred loss function under the inference framework of

maximum likelihood if the distribution of the target variable is Gaussian.

71

Mean squared error is calculated as the average of the squared differences between

the predicted and actual values. The result is always positive regardless of the sign

of the predicted and actual values and a perfect value is 0.0. The squaring means

that larger mistakes result in more error than smaller mistakes, meaning that the

model is punished for making larger mistakes.

It will be defined an optimizer as the efficient stochastic gradient descent algorithm

“adam” that means “Adaptive moment estimation”. This is a popular version of

gradient descent because it automatically tunes itself and gives good results in a

wide range of problems.

It was first introduced in 2005 by Diederik Kingma and Jimmy Ba specifying that

the Adam optimization algorithm is an extension to stochastic gradient descent that

has recently seen broader adoption for deep learning applications in computer

vision and natural language processing.

6.5. Train Keras Model

Once the model is compiled and has an efficient computation, it should be ready to

be executed on some data.

A simple way to train the model is to call the fit () function on the model.

Training occurs epochs and each epoch is split into batches. In fact, one epoch is

composed of one or more batches, based on the chosen batch size and the model is

fit for many epochs.

Epoch: One pass through all of the rows in the training dataset. It is the number of

epochs to train the model. An epoch is an iteration over the entire input and output

data provided.

Batch: One or more samples considered by the model within an epoch before

weights are updated. It is the number of samples per gradient update. If unspecified,

batch_size will default to 32.

The training process will run for a fixed number of iterations through the dataset

called epochs, that we must specify using the epochs argument. Another parameter

72

must be set and it is the number of dataset rows that are considered before the model

weights are updated within each epoch, called the batch size and set using the

batch_size argument. These configurations can be chosen experimentally by trial

and error.

The batch size is a hyperparameter that defines the number of samples to work

through before updating the internal model parameters.

When all training samples are used to create one batch, the learning algorithm is

called batch gradient descent. When the batch is the size of one sample, the learning

algorithm is called stochastic gradient descent. When the batch size is more than

one sample and less than the size of the training dataset, the learning algorithm is

called mini-batch gradient descent.

- Batch Gradient Descent. Batch Size = Size of Training Set

- Stochastic Gradient Descent. Batch Size = 1

- Mini-Batch Gradient Descent. 1 < Batch Size < Size of Training Set

The number of epochs is a hyperparameter that defines the number times that the

learning algorithm will work through the entire training dataset. In other words, it

is the number of complete passes through the training dataset before the training

process is terminated.

One epoch means that each sample in the training dataset has had an opportunity to

update the internal model parameters.

6.6. Test Keras Model

Now that the neural network has been trained on the entire dataset, it is possible to

evaluate its performances on the same dataset.

This phase is written through the predict () function on the model that passes the

same input and output used to train the model. This will generate a prediction for

each input and output pair and collect scores.

Making predictions is as easy as calling the predict () function on the model. After

the model is fit, predictions are made for all examples in the dataset.

73

All neural network models have two hidden layers of 100 nodes. The sigmoid

activation function is chosen for the output layer. In this work, two different

activation function has been used. Initially the Sigmoid function as the default one

and then the ‘Relu? To see the differences in terms of loss.

74

75

7. Results

In this chapter the results of this work will be presented in the form of graph for

different cases. After running several models with different hyperparameters, the

results are shown as learning curves and error tables.

A logic sequence has been followed in order to choose the kind of algorithm and its

parameters in the most efficient time and computational cost.

All the results units are m for displacements and Pa for tractions.

7.1 Dense

The dense model works without memory so it is not able to predict well elasto-

plastic behaviour of granular materials in the training and testing phases.

First of all, after setting all parameters, it is possible to see differences in the graphs

while changing the number epochs of the model. By increasing the epochs, the

results will be more accurate and the error will decrease.

The system to define whether changing the parameters helps the prediction of the

tractions is by looking at the overall error and how close the prediction curve

becomes regarding the data curve.

In this way the distance between the effective and physical data and the

computational predictions, known as loss is decreasing.

76

7.1.1. Changing Epochs

Figure 7.1 Case 20, epochs 100, batch 100

Figure 7.2 Case 20, epochs 1000, batch 100

77

In Fig. 7.1 and 7.2 the same case (case 20) is shown with different number of

epochs. If the number of iteration increases, the curve that fit and predict the data

will improve as noticeable in the two graphs.

7.1.2. Changing input

In this subchapter will be studied how the predictions improve while changing the

number of input.

In the Fig. 7.3 and 7.4 that represent Case 1, the epochs are 1000 and batch size is

10. A notable improvement of the results is seen as porosity and the fabric tensor

are added as input. Note that Fig. 7.3 has just two input (Un and Us) while Fig. 7.4

has 4 input (Un, Us, Porosity and Fabric Tensor).

Not every material property has the same value as input. In this case, by adding all

the one available in the DEM simulation except from the coordination number, the

dense model is capable to fit even the plasticity parts.

78

Figure 7.3 Case 1, epochs 1000, batch 10 , input just displacement

Figure 7.4 Case 1, epochs 1000, batch 100, Porosity and Fabric Tensor

79

It is also possible to see in these two figures that the Dense model is still roughly

capable to predict more complicated curves thanks to the parameter Fabric Tensor.

This improvement is more evident in case 10 where the Fabric Tensor changes

completely the prediction curve and the result is more accurate but still non-

sufficient to predict well the problem:

Figure 7.5 Case 10, epochs 1000, batch 10, Input: Un, Us and Porosity

80

Figure 7.6 Case 10, epochs 1000, batch 10, Input: Un, Us, Porosity and Fabric Tensor

In conclusion, the dense model even increasing the number of input or the iterations,

is not capable to predict the non-elastic curves as seen in the previous images.

The main reason could be that the Dense layer has not been developed to perform

with a large and sophisticated amount of data.

7.2 LSTM

The LSTM layers as well as the GRU in the next subchapter, are capable to better

capture the elasto-plastic behaviour of granular materials thanks to the memory

gates.It is also commonly used for manging thousands of data with different

relationships and pattens among them.

 In this subchapter the best combination of input is studied with 100 epochs because

the computational cost is lesser that increasing the iterations. Then, the number of

iterations will be increases with the case of input with less error in order to perform

a more efficient analysis. The error will be computed with the mean squared error

between the training and the testing data but also in the form of learning curves.

81

The data obtained from lower-scale numerical simulations are pre-processed and

converted to specific data structure compatible with the LSTM and GRU training

and validation algorithms.

7.2.1. Changing input

The best combination of input has been studied in terms of error. The general loss

is calculated from the training dataset that gives an idea of how well the model is

learning. The other type of error is the validation loss that is calculated from a hold-

out validation dataset that gives an idea of how well the model is generalizing.

The ‘validation split’ command is a float between 0 and 1. Basically, it is a fraction

of the training data to be used as validation data. The model will set apart this

fraction of the training data, will not train on it, and will evaluate the loss and any

model metrics on this data at the end of each epoch. The validation data is selected

from the last samples in the input and output data provided, before shuffling.

Among all of the input data, the 90% of them are used to train the neural network

and the 10% is used to validate it. The loss is the mean squared error between the

dataset and the data trained/validated.

Here our goal is to check whether the incorporation of any of these additional data

as input in the RNN network improves the prediction quality.

Running the neural network with 100 epochs, the results in terms of error at the

100th epoch are:

Table 7.1 Errors Changing the number of inputs (LSTM)

Input Training loss Validation loss

Us, Un 4.34*10-4 2.94*10-4

Us, Un, Coordination number 3.90*10-4 2.65*10-4

Us, Un, Porosity 4.19*10-4 2.86*10-4

82

Us, Un, Fabric Tensor 6.14*10-5 5.60*10-5

Us, Un, Coordination number and porosity 3.91*10-4 2.65*10-4

Us, Un, Coordination number and Fabric

Tensor

6.23*10-5 5.93*10-5

Us, Un, Porosity and Fabric Tensor 6.07*10-5 5.52*10-5

Us, Un, Coordination number, porosity and

Fabric Tensor

5.81*10-5 5.22*10-5

The fabric tensor is the parameter that better helps the neural network to predict the

tractions. The error is one order smaller that with just the other parameters.

It is possible to see that the coordination number is more effective than the porosity.

Computationally speaking, this means that the fabric tensor as well as the

coordination number, better represents the behaviour of a granular material.

In terms of error, the best combination is the one with all of the parameters as input.

In the following images it is possible to see the differences in term of predicting

curves with the number of inputs in case 200 with 100 epochs.

Figure 7.7 Case 200 Input: Un, Us

83

Figure 7.8 Case 200 Input: Un, Us and Porosity

Figure 7.9 Case 200 Input: Un, Us and Coordination number

Fig. 7.8 and 7.9 have the same number of input but one of them seems to have more

influence in the prediction curve, even if in this case is not well fitted.

The coordination number generally decrease the error and helps the curve to

become closer to Case 200.

84

Figure 7.10 Case 200 Input: Un, Us and Fabric Tensor

Figure 7.11 Case 200 Input: Un, Us Porosity and Coordination number

Even with porosity and coordination number together, an impressive improvement

is due to the fabric tensor in Fig. 7.10

85

Figure 7.12 Case 200 Input: Un, Us, Coordination number and Fabric Tensor

Figure 7.13 Case 200 Input: Un, Us, Porosity and Fabric Tensor

86

Figure 7.14 Case 200 Input: Un, Us, Coordination number, Porosity and Fabric Tensor

In conclusion, the best combination of input is the one reported in Fig. 7.14 with all

the input together. The error is lesser than all the other combinations.

7.2.2. Learning curves

Generally, a learning curve is a plot that shows time or experience on the x-axis and

learning or improvement on the y-axis. During the training of a machine learning

model, the current state of the model at each step of the training algorithm can be

evaluated. It can be evaluated on the training dataset to give an idea of how well the

model is “learning.” It can also be evaluated on a hold-out validation dataset that is

not part of the training dataset. Evaluation on the validation dataset gives an idea of

how well the model is “generalizing.”

• Train Learning Curve: Learning curve calculated from the training dataset

that gives an idea of how well the model is learning.

• Validation Learning Curve: Learning curve calculated from a hold-out

validation dataset that gives an idea of how well the model is generalizing.

It is common to create dual learning curves for a machine learning model during

training on both the training and validation datasets.

87

The curves in this work are optimization learning curves where the curves are

calculated on the metric by which the parameters of the model are being optimized

e.g. loss.

A good fit is the goal of the learning algorithm and exists between an overfit and

underfit model.

A good fit is identified by a training and validation loss that decreases to a point of

stability with a minimal gap between the two final loss values.

The loss of the model will almost always be lower on the training dataset than the

validation dataset. This means that we should expect some gap between the train

and validation loss learning curves. This gap is referred to as the “generalization

gap.”

A plot of learning curves shows a good fit if:

• The plot of training loss decreases to a point of stability.

• The plot of validation loss decreases to a point of stability and has a small

gap with the training loss.

Here are presented three different learning curves, depending on the number of

epochs they are referred to. All three Figures are referred to the model with all the

inputs on it because it is the best fit with less error.

In general, the models show a good fit and there is not an overfitting problem. The

curves from Fig, 7.15 to 7.17 show a slightly progress with the increasing of the

number of epochs.

88

Figure 7.15 Learning curves with 10 epochs

Figure 7.16 Learning curves with 100 epochs

Figure 7.17 Learning curves with 1000 epochs

89

7.2.3. Changing Epochs

The error between the train and the test phase is valuated with the mean squared

error. In this work the error is divided in each case of the dataset, the first 10000

rows of the csv file are used to train the network while the other to test the model.

The error decrease with the number of epochs as seen in §7.2.2 and the model used

in this subchapter has all of the input in order to minimize the error.

Figure 7.18 Mean Squared Error with 10 epochs

90

Figure 7.19 Mean Squared Error with 100 epochs

Figure 7.20 Mean Squared Error with 1000 epochs

Every case has a distinct error because some cases are different and the related

curves have various shapes among the other. This means that the model cannot

predict well some of them. There are a lot of improvement between Fig. 7.18 and

7.19 because the model can predict much more data. From fig. 7.19 and 7.20 there

are no big differences.

91

With the best combination of input found in the previous subchapter, it is possible

to increase the epochs and see the loss for training and validation at the 1000th

epoch.

Table 7.2 Errors changing the number of epochs (LSTM)

Total epochs Training loss Validation loss

100 5.819*10-5 5.22*10-5

1000 5.14*10-5 4.62*10-5

Now will be presented the differences between some cases with respectively 100

and 1000 epochs. Note that the first case has no component in s direction.

92

• Case 1

Figure 7.21 Case 1, 100 epochs

Figure 7.22 Case 1, 1000 epochs

93

• Case 2

Figure 7.23 Case 2, 100 epochs

Figure 7.24 Case 2, 1000 epochs

94

• Case 10

Figure 7.25 Case 10, 100 epochs

Figure 7.26 Case 10, 1000 epochs

95

• Case 20

Figure 7.27 Case 20, 100 epochs

Figure 7.28 Case 20, 1000 epochs

96

• Case 50

Figure 7.29 Case 50, 100 epochs

Figure 7.30 Case 50, 1000 epochs

97

• Case 100

Figure 7.31 Case 100, 100 epochs

Figure 7.32 Case 100, 1000 epochs

98

• Case 200

Figure 7.33 Case 200, 100 epochs

Figure 7.34 Case 200, 1000 epochs

99

7.2.4. Changing activation function

The differences between two main activation functions have been developed in this

work. All of the previous models had the “Sigmoid function” as activation function

and the other one to code was the “Relu” function.

Basically, the only difference in practice is in term of the validation loss because it

doesn’t change the general loss at the 1000th epoch.

Table 7.3 Errors changing activation function (LSTM)

Activation function Training loss Validation loss

Sigmoid 5.14*10-5 4.62*10-5

Relu 5.14*10-5 4.49*10-5

Figure 7.35 learning curve with Relu activation function

As seen in Fig 7.35 in this model there are no problems of overfitting and in general

the error can be approximated to zero.

100

Figure 7.36 Mean squared error-Relu activation function

Figure 7.37 Mean squared error-Sigmoid activation function

In Fig. 7.36 the mean squared error associated to the model with the Relu function

is lower to the one with the sigmoid function as seen in Fig. 7.37.

7.3 GRU

The GRU algorithm is a form of LSTM that has been modified as explained in the

previous chapters. While all the parameters stays the same, the model with GRU

layers doesn’t predict well as the LSTM model so it has been necessary to reduce

the batch size in order to capture more details in the traction-separations curves.

101

First of all it has been necessary to build a model made by two GRU layers with 2

neurons each and without any dropout. Another Dense layer has been added at the

end.

All of the model had as input the displacements, the porosity, the coordination

number and the fabric tensor. The Traction had been used as outputs.

7.3.1. Changing epochs

Differences in terms of learning rate between a model trained with 130 epochs such

as the LSTM model and with the sigmoid activation function. The validation split

is 0.1 as the previous cases.

Figure 7.38 Learning curves with 100 epochs

Figure 7.39 Learning curves with 1000 epochs

102

The error has decreased but not considerably between the two cases at the last

epoch. Note that there are no problems of overfitting so the model is training well.

Table 7.4 Errors changing the number of epochs (GRU)

Epoch Training loss Validation loss

100 5.75*10-5 5.04*10-5

1000 5.17*10-5 4.57*10-5

Some cases will now be presented as comparison between these two situations.

• Case 1

Figure 7.40 Case 1, 100 epochs

Figure 7.41 Case 1, 1000 epochs

103

• Case 50

Figure 7.42 Case 50, 100 epochs

Figure 7.43 Case 50, 1000 epochs

104

• Case 200

Figure 7.44 Case 200, 100 epochs

Figure 7.45 Case 200, 1000 epochs

105

Figure 7.46 Mean Squared Error, 100 epochs

Figure 7.47 Mean Squared Error, 1000 epochs

Since increasing the number of epochs has not improved the differences in terms of

prediction curves and final error, the GRU model needed to be modified and

adjusted to these kind of dataset so the first thing that has been changed is the

activation function.

7.3.2. Changing activation function

In order to minimize the time and computational cost, the Relu activation function

has been introduced in the model with 100 epochs.

106

In terms of error, the loss at the 100th epoch is:

Table 7.5 Errors changing the activation function (GRU)

Activation function Training loss Validation loss

Sigmoid 5.75*10-5 5.04*10-5

Relu 5.49*10-5 4.87*10-5

7.3.3. Changing batch size

Since the error in general can be improved, the batch size has been changed from

130 to 64. The proceed is based on trial and error although there are some

algorithms that can help to decide with size is better. In general, choosing the batch

size depend on the problem type, the size of the dataset and the layers. In this case,

with GRU network a smaller batch size has been introduced to better capture the

nonlinear behaviour of the material.

All the trained models in this subchapter have the Relu Activation function because

it can reduce the error and have been trained with 100 epochs.

In Tab. 7.6 it is possible to see how the mean squared error in each phase of the

neural network is reducing while changing the batch size but not the activation

function.

Table 7.6 Errors changing batch size (GRU)

Batch size Training loss Validation loss

130 5.49*10-5 4.87*10-5

64 3.11*10-5 2.27*10-5

As last improvement the number of epochs has been increased to 1000 to see the

real differences in terms of error and graphically in the traction-separation curves.

107

The Relu activation function and batch size of 64 samples has been maintained in

the final model.

Figure 7.48 Mean Squared Error, 100 epochs

Figure 7.49 Mean Squared Error, 1000 epochs

108

Figure 7.50 Learning curves with 100 epochs

Figure 7.51 Learning curves with 1000 epochs

The final results with the GRU model are the following:

109

Figure 7.52 Case 1

Figure 7.53 Case 2

110

Figure 7.54 Case 10

Figure 7.55 Case 17

111

Figure 7.56 Case 20

Figure 7.57 Case 50

112

Figure 7.58 Case 100

Figure 7.59 Case 170

113

Figure 7.60 Case 200

114

115

8. Conclusions

Starting from the DEM simulations, in few hours a huge amount of data has been

created instead of doing hundreds of laboratory experiments.

Furthermore, this machine learning approach helps us to create new and more

complicated constitutive laws that do not require human supports just by coding a

proper neural network.

In fact, the machine learning approach has been successful because it can predict

more complicated traction-separation constitutive laws giving the displacement as

input and the tractions as output. Due to the nature of granular materials. It has been

possible to classify which property better represents the behaviour of the material.

In particular, the Fabric Tensor that indicates how the single grains are oriented

improves well the constitutive laws.

Second, the coordination number that characterizes how connected are the grains

and last the porosity which is a macroscopic feature.

The intrinsic nature of the algorithms used in this work have been displayed. In

particular, the differences between a simple layer and a recurrent neural network

with memory cells.

This method allows to predict data with a black box model, which is not easy to

comprehend. The mechanism and the single decisions made by the network in each

hidden layer lead to a sort of knowledge of the algorithm hard to comprehend.

For sure this approach is able to best predict any kind of materials by just adjusting

the hyperparameters of the networks because the algorithm generates relationship

among different measurable physical quantities.

New development of this work can be done by adding algorithms that automatically

choose the best value of all the hyperparameters so that the human error could be

minimized.

116

117

Bibliography

• J. Planas, B.Sanz, J.M. Sancho, (2019). A first approach to comparing

cohesive traction-separation laws for concrete. 10th International Conference

on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS-X.

• K. Wang, W.C. Sun, (2019). Meta-modeling game for deriving theory-

consistent, micro-structure-based traction-separation laws via deep

reinforcement learning, Computer Methods in Applied Mechanics and

Engineering.

• Y. Heider, K. Wang, W.C. Sun, (2019), SO(3)-invariance of graph-based

deep neural network for anisotropic elastoplastic materials, Computer

Methods in Applied Mechanics and Engineering.

• K. Wang, (2019). From multiscale modeling to metamodeling of

geomechanics problems, Columbia University.

• K. Wang, W.C. Sun, (2018), A multiscale multi-permeability poroplasticity

model linked by recursive homogenizations and deep learning, Computer

Methods in Applied Mechanics and Engineering.

• E. C. Bryant, W. Sun, (2018). A mixed-mode phase field fracture model in

anisotropic rocks with consistent kinematics. Computer Methods in Applied

Mechanics and Engineering.

• Chen, Daniel Y, (2018). Pandas for Everyone: Python Data Analysis. Boston

• T. Kirchdoerfer, M. Ortiz, (2017). Data driven computing with noisy material

data sets. ArXiv preprint arXiv:1702.01574.

• McKinney, Wes (2017). Python for Data Analysis : Data Wrangling with

Pandas, NumPy, and IPython (2nd ed.).
• T. Kirchdoerfer and M. Ortiz, (2016). Data-driven computational mechanics.

Computer Methods in Applied Mechanics and Engineering, 304:81–101.

• Guttag, John V., (2016). Introduction to Computation and Programming

Using Python: With Application to Understanding Data. MIT Press.

• M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, et al., (2016). Tensorflow: Large-scale

machine learning on heterogeneous distributed systems. arXiv preprint

arXiv:1603.04467.

• F. Chollet et al. (2015). Keras. https://github.com/fchollet/keras.

• D. P. Kingma and J. Ba, (2014). Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980.

• Cho et al., (2014). Empirical Evaluation of Gated Recurrent Neural Networks

on Sequence Modeling.

• E. Bressert (2012). SciPy and NumPy: an overview for developers.
• Kyoungsoo Park, Glaucio H. Paulino, (2011). Cohesive zone models: a

critical review of traction-separation relationships across fracture surfaces.

118

• K. Park and G. H. Paulino, (2011). Cohesive zone models: a critical review of

traction-separation relationships across fracture surfaces. Applied

Mechanics Reviews, 64(6):060802.

• Millman, K. Jarrod; Aivazis, Michael (2011). Python for Scientists and

Engineers. Computing in Science and Engineering.
• F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. (2011). Scikit-

learn: Machine learning in Python. Journal of Machine Learning Research,

12:2825–2830.

• V. ˇSmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky,

J. Kozicki, C. Modenese, L. Scholt`es, L. Sibille, et al.(2010) Yade

documentation. The YadeProject. http://yade-dem. org/doc/.

• Hastie, Tibshirani, Friedman, (2009). The element of statistical learning,

Springer, New York.

• Freed, Y., and Banks-Sills, L., (2008). A New Cohesive Zone Model for Mixed

Mode Interface Fracture in Bimaterials. Eng. Fract. Mech., 75(15), pp. 4583–

4593.

• C. Bishop, (2006). Pattern recognition and machine learning, Springer, New

York.

• Aydin, R. I. Borja, P. Eichhubl, (2006). Geological and mathematical

framework for failure modes in granular rock. Journal of Structural Geology,

28(1):83–98, 2006.

• Kandula, S. S. V., Abanto-Bueno, J., Geubelle, P. H., and Lambros, J., (2005).

Cohesive Modeling of Dynamic Fracture in Functionally Graded Materials.

Int. J. Fract.

• T.L. Anderson, (2005). Fracture Mechanics: Fundamentals and Applications.

CRC Press.

• Tan, H., Liu, C., Huang, Y., and Geubelle, P. H., (2005). The Cohesive Law

for the Particle/Matrix Interfaces in High Explosives. J. Mech. Phys. Solids.7.

• Scheider, W. Brocks, (2003). The Effect of the Traction Separation Law on

the Results of Cohesive Zone Crack Propagation Analyses. Key Engineering

Materials 251–252,313–318.

https://doi.org/10.4028/www.scientific.net/kem.251-252.313

• M. Elices, G. Guinea, J. Gomez, and J. Planas, (2002). The cohesive zone

model: advantages, limitations and challenges. Engineering fracture

mechanics, 69(2):137–163.

• Ortiz, M., and Pandolfi, A., (1999). Finite-Deformation Irreversible Cohesive

Elements for Three Dimensional Crack-Propagation Analysis. Int. J. Numer.

Methods Eng.

• Geubelle, P. H., and Baylor, J. S., (1998). Impact-Induced Delamination of

Composites: A 2D Simulation. Compos. Part B: Eng.

https://doi.org/10.4028/www.scientific.net/kem.251-252.313

119

• S. Hochreiter and J. Schmidhuber,(1997). Long short-term memory. Neural

computation, 9(8):1735–1780.

• K. Bagi, (1996). Stress and strain in granular assemblies. Mechanics of

materials, 22(3):165–177.

• T. L. Anderson, (1995). Fracture Mechanics – Fundamentals and

applications Second Edition, CRC Press.

• C. Bishop, (1995). Neural Networks for Pattern Recognition, Clarendon

Press, Oxford.

• Tvergaard, V., and Hutchinson, J. W. (1993). The Influence of Plasticity on

Mixed Mode Interface Toughness. J. Mech. Phys. Solids.

• Xu, X. P., and Needleman, A., (1993). Void Nucleation by Inclusion

Debonding in a Crystal Matrix. Model. Simul. Mater. Sci. Eng., 1(2), pp.

111–132.

• G. Van Rossum, (1993). An Introduction to Python for UNIX/C

Programmers. Proceedings of the NLUUG Najaarsconferentie (Dutch UNIX

Users Group).
• Rice, J. R., (1992). Dislocation Nucleation From a Crack Tip: An Analysis

Based on the Peierls Concept. J. Mech. Phys. Solids, 40(2), pp. 239–271.

• Beltz, G. E., and Rice, J. R., (1991). Dislocation Nucleation Versus Cleavage

Decohesion at Crack Tips. Modeling the Deformation of Crystalline Solids

Presented.

• Tvergaard, V., (1990). Effect of Fibre Debonding in a Whisker-Reinforced

Metal. Mater. Sci. Eng., A125(2), pp. 203–213.

• Needleman, A., (1987). A Continuum Model for Void Nucleation by Inclusion

Debonding. ASME J. Appl. Mech., 54(3), pp. 525–531.

• Satake, (1982). Fabric tensor in granular materials. In IUTAM Conference

on Deformation and failure of Granular Materials.

• J. Christoffersen, M. Mehrabadi, S. Nemat-Nasser, (1981). A

micromechanical description of granular material behavior. Journal of

Applied Mechanics, 48(2):339–344.

• Rose, J. H., Ferrante, J., and Smith, J. R., 1981, “Universal Binding Energy

Curves for Metals and Bimetallic Interfaces,” Phys. Rev. Lett., 47(9), pp.

675–678

• P. A. Cundall and O. D. Strack (1979). A discrete numerical model for

granular assemblies. Geotechnique, 29(1):47–65.

• G.I. Barenblatt, (1962). The mathematical theory of equilibrium cracks in

brittle fracture. Advances in Applied Mechanics. pp. 55–129.

• Samuel, A. L. (1959). Some studies in machine learning using the game of

checkers. IBM Journal of research and development, 3(3), 210-229.

120

• Peierls, R., 1940, “The Size of a Dislocation,” Proc. Phys. Soc., 52(1), pp. 34–

37.

• https://machinelearningmastery.com/

• https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense

• Machine learning course on YouTube, Caltech University,

https://www.youtube.com/watch?v=mbyG85GZ0PI&t=3678s

